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EXECUTIVE SUMMARY 

Transportation management centers (TMCs) have used automatic incident detection (AID) 

with varying levels of success in the past. Surveys on the use of incident detection 

algorithms (Williams and Guin 2007) have indicated a lukewarm response of the industry 

to AID, primarily because of the false alarms generated by these algorithms. However, AID 

technology has evolved rapidly in the last several years with significant improvements in 

video quality and computing resources. Even with the proliferation of mobile phones and 

the use of smartphone-based applications (apps) to perform crowdsourced incident 

detection, there is still a relevance for AID under low-volume conditions where there are 

very few motorists available to make a report, in case the motorists involved in the incident 

are unable to make a call. Also, AID can significantly cut down on the detection and 

reporting time, i.e., the time between the actual occurrence of the incident and the time 

when the TMC is notified about the incident. However, both AID and crowdsourced data 

have some limitations and challenges related to issues with redundant reports with 

overwhelming amounts of unusable data. 

The key objectives of this project were to: 

1. Evaluate the accuracy of the vehicle detection technology deployed in the I-475 

testbed. 

2. Evaluate the feasibility of using crowdsourced smartphone application–based 

incident detection for reducing incident detection times. 

3. Evaluate the accuracy of the selected AID technology and the feasibility of use of 

that technology in improving incident management. 
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4. Develop a method to quantify the impact of incidents in terms of vehicle delay. 

The project essentially performed four closely related studies. Chapter 2 presents an 

accuracy evaluation of a vehicle detection technology. Chapter 3 presents an evaluation of 

the feasibility of using crowdsourced smartphone application–based incident detection for 

reducing incident detection times. Chapter 4 presents the evaluation of the accuracy of an 

AID technology and the evaluation of the feasibility of use of that AID technology in 

improving incident management. Chapter 4 also presents the machine learning–based 

methodology that was developed for use on top of a base AID algorithm to enable 

automated identification of potential high-impact incidents. Chapter 5 presents the 

development of a method to quantify the impact of incidents in terms of vehicle delay to 

lay the foundations of automated decision support for real-time management of emergency 

response resources. 

Results of the accuracy evaluation of the vehicle detection technology revealed that the 

count and speed measurements are highly accurate with less than a 2 percent error under 

normal circumstances. The error in vehicle classification was in the range of 6–7 percent 

under these conditions, which is typically considered acceptable for most applications. The 

count errors, however, increase significantly with a downward bias, i.e., the detector fails to 

detect vehicles under inclement weather conditions, such as heavy rain or snow. The speed 

measurements had a consistent upward bias when tested at average roadway operating 

speeds between 40 and 70 mph. However, the errors were typically less than 5 mph (about 

10 percent of the average speed). 
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The evaluation of the feasibility of using crowdsourced smartphone application–based 

incident detection for reducing incident detection times was performed by comparing 

detections from the Waze® logs to detections in the Georgia Department of 

Transportation’s NaviGAtor system’s incident logs. With the data fusion methodology 

developed, about 46 percent of the NaviGAtor incidents could be re-identified in the Waze 

logs in the Atlanta area and about 39 percent in the Macon area. A correlation analysis with 

the Waze incident attributes confirmed that incidents with lower report rating of 0 or 1 in 

Waze have a slightly lower match rate with NaviGAtor logs. Incidents with a higher 

confidence number in Waze have a higher match rate, and incidents with a reliability of 10 

in Waze have a higher match rate than the average. 

Among the incidents that matched between the two logs, it was observed that in about 

57 percent of the cases, the incident appeared in the Waze log before it appeared in the 

NaviGAtor incident log. In that 57 percent of the cases, the gain in the time to detection 

was largely in the 5–15-minute range. However, in the other 43 percent of the cases, Waze 

took longer to detect and log the incident than NaviGAtor, with most delays in the range of 

0–30 minutes. 

The evaluation of the accuracy of an AID technology involved an intensive effort of 

manual review of videos and images associated with 10,125 incident alarms generated by 

the AID over a period of 91 days. About 12 percent of the alarms could not be verified to 

be true because of the lack of evidence based on the videos and images available. About 

2.6 percent of the alarms were misplaced in terms of lane assignment. However, there was 

not enough information available to verify whether the AID missed any incident. A 

detection rate for the AID technology, therefore, could not be established. 
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Neither of the unverifiable or misplaced alarm cases, in itself, would likely be a reason for 

not using AID. The sheer bulk of the “true” alarms generated by the AID, however, 

consists of very minor incidents that have very little impact on traffic operations or traffic 

safety. These low-impact alerts, while true alerts, could potentially require significant 

resources to check and confirm in real time, reducing the efficiency of system usability. A 

methodology for reducing the high number of noncritical alarms such as shoulder stalls is 

therefore proposed. The study uses a clustering machine learning framework for 

developing consolidation strategies along with filters that will eliminate most noncritical 

alarms and associate confidence values with the alerts, thereby allowing for a focus on 

higher confidence alerts during busy periods. Clustering evolution patterns of the 

appearance of multiple alarms, where the basic alarms are generated by the AID system 

based on traffic anomalies, are used to train the machine learning algorithm to separate 

potential high-impact incidents from normal congestion or noncritical related stops and 

slowdowns. The results indicated a significant potential of the framework in consolidating 

the AID-generated alarms to a small number of high-confidence clusters that can be used in 

real-time for incident management operations. This methodology might be particularly 

useful in controlling the number of alarms if AID is deployed over a large coverage area. 

In regard to the feasibility of use of AID, it is important to recognize a limitation of the 

evaluation. The I-475 testbed provided a stretch of freeway with very little recurrent 

congestion. This helped in the ability to easily confirm the validity of the alerts during the 

manual review process. However, this also means that the test scenarios did not include 

recurrent congestion conditions. The performance of the AID technology, when used on 

freeways with recurrent congestion, has not been evaluated in this study. 
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In determining AID zone and device placement location, specific attention should be given 

to merge or diverge points, weaving areas, or other zones with a higher potential for an 

incident. Should an incident occur outside of the detection zone of the AID device (such as 

the view of a camera in video-based AID), the AID will not provide feedback until the 

results of the incident (e.g., spillback) encroach into the detection zones (i.e., come into the 

view of the cameras). Thus, placement should consider the potential of such lag in 

receiving information. In addition, for video-based AID, attention should be paid to items 

such as seasonal growth of vegetation and other potential temporary obstructions in the 

camera frame, as they may be interpreted as an incident. Finally, for a video-based AID, 

the same cautions, as required for video-based vehicle detection systems, are 

recommended. For example, the camera angle should be as steep (overhead) as possible to 

limit occlusion-related errors (both vertical, i.e., within lane, and horizontal, i.e., across 

lanes). This can be a particular challenge where a camera angle precludes the AID from 

being able to distinguish between a vehicle on the shoulder and in the right travel lane, as 

vehicles on shoulders result in the majority of detections, and filtering out or assigning a 

lower priority to these alarms is often desirable. During nighttime conditions, flat camera 

angles can produce views that generate false alarms of wrong-way detection from 

reflections of headlights on roadside objects such as barrier walls. A balance needs to be 

achieved between producing a larger area of detection by using flatter angles of the 

cameras, which will lead to lesser “blind spots,” versus a higher quality of detection within 

a smaller area produced by steeper angles of cameras. 

Lastly, the project involved a study to develop a method to quantify the impact of incidents 

in terms of vehicle delay. Spot speed and vehicle count measurement has been the most 
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widely accepted performance monitoring method for traffic operations data collection by 

transportation agencies. Delay estimation methods based on spot speed and cumulative 

count are typically deployed by practitioners and researchers alike for rapid estimation of 

delays as a precursor to congestion mitigation. In this report, these commonly used 

incident-induced delay estimation methodologies, which are based on queuing theory or 

shockwave analysis models, are reviewed and validated against microscopic simulation of 

a real-life incident. For the simulation model, NaviGAtor speed–volume data were used. 

The incident timeline was constructed using NaviGAtor incident logs. The comparison 

revealed challenges related to noisy data and the failure of spot-speed measurements to 

adequately capture heterogeneity in congested traffic, which rendered the methodologies 

impractical for field use. In the absence of any alternative method to accurately quantify 

delay within the constraints of field observational data, a regression model was developed 

using data from a non-exhaustive set of incident scenarios simulated using Vissim®, to 

help obtain rapid estimates of delays for incidents with varying characteristics occurring 

under varying base conditions. This regression model can aid in resource allocation for 

efficient incident management and identification of influence factors. 
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CHAPTER 1. INTRODUCTION 

Transportation management centers (TMCs) have used automatic incident detection (AID) 

with varying levels of success in the past. The early detection tools used real-time traffic 

flow data-based algorithms to identify anomalies in traffic. More recent AID tools are 

based on real-time analysis of video streams. For instance, the Georgia Department of 

Transportation (GDOT) currently utilizes video analysis technology for the detection of 

stopped vehicles on shoulders and limited areas of active lanes. However, AID technology 

has evolved rapidly in the last several years, with significant improvements in video quality 

and computing resources. In light of the recent evolution in video-based AID technologies, 

it is necessary to evaluate the feasibility of use of this technology by TMCs. 

Surveys on the use of incident detection algorithms (Williams and Guin 2007) have 

indicated a lukewarm response of the industry to AID, primarily because of the false alarms 

generated by these algorithms. Similar observations have been made with video-based AID 

in previous studies (Gillen 2001)regarding the occurrence of false alarms. In addition, with 

the proliferation of cellular phones, manual detection based on calls from motorists has 

become the primary method of detection. Crowdsourced methods of detection using 

smartphone-based applications (apps) are another detection method that has recently made 

inroads into the detection process. However, there is still a relevance for AID under low-

volume conditions where there are very few motorists available to make a report, in case 

the motorists involved in the incident are unable to make a call. Also, AID can significantly 
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reduce the detection and reporting time, i.e., the time between the actual occurrence of the 

incident and the time when the TMC is notified about the incident. 

The overarching goal of this project is to study a selected video-based AID technology 

relative to the existing detection via the Georgia 511 (NaviGAtor) incident reports and the 

manual observations of TMC operators.  

Moreover, crowdsourced methods of incident detection using smartphone-based apps have 

recently started making inroads into the incident management process. Waze®, owned by 

Google, has teamed up with state, county, and city departments of transportation in an 

effort to help with the integration. While the benefits of such a partnership are obvious, 

crowdsourced data have some limitations and challenges related to issues with redundant 

reports with overwhelming amounts of unusable data. To investigate the potential of 

incident detection and notification via crowdsourced smartphone apps, such as Waze, in 

reducing the time to detection (TTD), a comparative analysis is performed using Waze and 

the incident logs from NaviGAtor, the GDOT TMC’s advanced traffic management system 

(ATMS). 

In addition to the primary goal of evaluating the incident detection technology, this project 

also evaluates a vehicle detection technology. The project evaluates the detection accuracy 

and quality of data generated by the vehicle detection technology test-deployed by GDOT 

on I-475. 
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The key objectives of the project are to: 

1. Evaluate the accuracy of the vehicle detection technology deployed in the I-475 

testbed. 

2. Evaluate the feasibility of using crowdsourced smartphone application–based 

incident detection for reducing incident detection times. 

3. Evaluate the accuracy of the selected AID technology and the feasibility of use of 

the AID technology in improving incident management. 

4. Develop a method to quantify the impact of incidents in terms of vehicle delay. 

Chapter 2 presents the results of the accuracy evaluation of the vehicle detection 

technology selected by GDOT for testing on the I-475 testbed. The accuracies of vehicle 

counts and vehicle speed measurements, under different traffic scenarios and different 

ambient conditions, are evaluated against manual counts and measurements obtained from 

videos recorded for the test site.  

Chapter 3 presents the results of the evaluation of the feasibility of using crowdsourced 

smartphone application–based incident detection for reducing incident detection times. 

Data provided by the navigation smartphone application Waze®, through the Connected 

Citizens Program (now called Waze for Cities), is compared with GDOT’s incident 

management program’s incident logs by developing a data fusion approach whereby an 

incident in one dataset is identified in the other dataset with a high degree of confidence. 

The data fusion enables the computation of the potential time savings that can be realized 

by an early detection of an incident by using Waze as compared to the currently employed 

methods of detection. 
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Chapter 4 presents the evaluation of the accuracy of the selected AID technology and the 

use of the AID technology in improving incident management. Evaluations are performed 

with a manual review of video and image logs of the alarms identified by the AID. The 

study identified a potential improvement in system efficiency through the separation of 

incidents with lower impacts on traffic to allow for the prioritization of the high-impact 

incidents. A methodology based on machine learning (ML) is developed that can be used 

on top of a base AID algorithm to enable automated identification of potential high-impact 

incidents. 

Chapter 5 develops a method to quantify the impact of incidents in terms of vehicle delay 

to lay the foundations of automated decision support for real-time management of 

emergency response resources. This chapter takes a critical look at several of the 

conventional methods of incident delay estimation and demonstrates their potential failure 

for accurate estimation of delay in the presence of noisy data and the failure of the 

homogeneity assumption of traffic under congested conditions. A regression-based model 

is developed for rapid estimation of incident delay that can be used to produce robust 

results even in the presence of data noise.
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CHAPTER 2. FLOW AND SPEED DATA VALIDATION 

INTRODUCTION 

The Georgia Department of Transportation uses a wide array of detection technologies to 

support NaviGAtor, GDOT’s advanced traffic management system. To ensure that the 

system can take advantage of new and emerging detection technologies, it is essential to 

run comprehensive field tests on these technologies before deployment. In this chapter, an 

evaluation of the detection accuracy and quality of data is performed for one of the 

emerging vehicle detection technologies that is being test-deployed by GDOT on I-475. 

The vehicle detection technology evaluated is The Infra-Red Traffic Logger, or TIRTL. 

TIRTL uses non-invasive light-based detection for vehicle count, classification, lane 

association, and speed measurement (see figure 1) (CEOS 2020). The accuracy evaluation 

of vehicle counts and speeds consisted of comparisons with data obtained from traditional 

loop detectors and manual counts under different test scenarios, such as, under light-to-

medium traffic flow, during inclement weather conditions, and during ongoing construction 

that results in heavier traffic on one lane. The Methodology and Results sections below 

provide details about the method employed to extract the data for analysis and the results of 

the evaluation, respectively. 

METHODOLOGY 

For detection accuracy comparison, a data quality check was done for vehicle counts and 

speed estimates from TIRTL detectors set up along a segment on I-475 (see figure 2, where 

the TIRTL detector is highlighted by a red rectangle). Subsequent analysis presented in this 
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section is divided into two parts:  first, an evaluation of the vehicle counts generated by 

TIRTL, and, second, an evaluation of the speed measurements provided by TIRTL. 

 

Figure 1. Illustrations. The working principles of TIRTL.  

(Source: TIRTL https://www.ceos.com.au/products/tirtl/) 

 

Figure 2. Photo. TIRTL detector setup along I-475 in northbound direction. 
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Vehicle Count Comparison  

To determine the accuracy of the vehicle counts, the data from TIRTL are compared 

against the data from an adjacent inductive loop detector, as well as manual counts. The 

manual counts for this study were extracted using video recordings of the test segment 

obtained from GDOT’s traffic monitoring cameras. The videos recorded the traffic from 

10/24/2017 to 03/06/2018, with each day’s video clip recording from 5:00 AM to 4:00 AM 

the next day. Video data were recorded and processed for different traffic conditions: under 

inclement weather conditions (i.e., rain and snow), during ongoing construction-related 

congestion along the road segment, and under regular light-traffic conditions. The dates and 

periods of the video data processed for data extraction are provided in table 1. 

Table 1. Schedule of recorded video data for evaluation. 

Date of the 

Recording 
Time 

Total Duration 

(minutes) 

Driving 

Conditions 

10/30/2017 
09:02:03–09:22:03 

29 Regular 
17:00:08–17:09:17 

10/31/2017 
11:25:06–11:35:09 

12:03:10–12:07:15 
14 

Construction in 

right-most lane 

11/09/2017 
10:59:00–11:09:00 

20 
Rainy (inclement 

weather) 11:30:04–11:40:49 

12/08/2017 
12:57:02–13:17:01 

31 
Snow (inclement 

weather) 13:57:24–14:08:01 
 

To obtain the vehicle counts, data were manually extracted from the videos using Georgia 

Institute of Technology’s Multi Video Player (GT-MVP). GT-MVP is a Python®-based 

software application developed by the Georgia Tech transportation research group to 

provide a user-friendly interface to extract complex traffic data from videos (Saroj et al. 

2018). The extracted vehicle count data included the timestamp, lane number, and 
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classification of each vehicle when it crossed the detector, as observed from the video. 

Vehicles were classified according to Federal Highway Administration (FHWA) vehicle 

classification guidelines (Office of Research 2014). Table 2 shows a sample of extracted 

data for 11/09/2017 with start time as 10:59:00 AM. The two datasets, one given by TIRTL 

and the other extracted from the videos, were then combined for verification. Figure 3 

shows a screenshot of a typical Excel sheet with the combined datasets, where the left side 

of the sheet is manually extracted data and right side is from TIRTL. 

The video data was recorded over a 4-month period to ensure that different traffic operation 

conditions are captured. However, as described above, the data extraction process was 

extremely time consuming, involving frame by frame playback of videos, and a second 

pass to review the records in order to ensure high accuracy of the manually extracted data. 

Previous studies (Guin et al. 2016; Toth et al. 2013) have shown that attempts at faster data 

reduction lead to inaccuracies in the manual data and can lead to errors in the evaluation. 

Hence, a small sample size, that allowed for data collection by experienced researchers, 

supplemented by review of the datapoints, was chosen to ensure an accurate evaluation. 

For data verification, the TIRTL data were compared with the manually extracted data. For 

comparisons using small datasets over a limited time period, there is a risk of introduction 

of biases because of timestamp mismatches. For example, a network-latency or clock-

offset–related time shift of 15 seconds that results in one vehicle platoon being counted 

within one dataset and missed in another will not have a significant effect when the period 

of aggregation is 15 minutes, but such a shift will generate large spurious errors when the 

aggregation period is short, such as 1 minute. With the resource-intensive nature of the data 

collection, the amount of video processed for data extraction was limited to 30 minutes. To 
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eliminate spurious errors in the comparison, the pattern of arrival of vehicles and the 

corresponding vehicle class (in a subset of the data) were used to compute the time offset 

adjustment required to ensure that the vehicle arrivals align in both time series. The typical 

offset observed was a latency of 8–9 seconds in the TIRTL data.  

Table 2. Sample extracted data for 11/09/2017 

with start time of 10:59:00 AM. 

Time – Video 1 Lane Vehicle Type 

0:00:12 3 11 

0:00:15 3 2 

0:00:18 3 2 

0:00:22 3 2 

0:00:25 3 2 

0:00:34 3 2 

0:00:35 3 7 

0:00:40 3 2 

0:00:46 3 2 

0:00:47 3 2 

0:01:06 3 11 

0:01:13 3 9 

0:01:22 3 2 

0:01:28 3 6 

0:01:32 3 9 

0:01:44 3 10 

0:01:51 3 2 

0:01:56 3 9 

0:01:59 3 2 

0:02:02 3 2 

0:02:07 3 2 

0:02:21 3 2 

0:02:23 3 2 
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Figure 3. Datasets. Data for 11/09/2017 with start time 10:59:00 AM. 

Speed Estimate Verification 

For accuracy evaluation of speed measurements, the TIRTL-generated speeds were 

compared to speed data extracted manually from videos at the test site. Videos for a 

particular day (i.e., 10/31/2018) starting from 11:34:00 AM were used for this purpose. 

During this particular day, construction activity was in progress in the lane farthest from 

the median, in the northbound direction. To extract ground truth from the selected video, 

VirtualDub (version 1.10.4), an open-source video editing software, was used (Lee 2000). 

Figure 4 shows a screenshot of VirtualDub’s user interface. The video was played back 

frame by frame. The speed for any vehicle was estimated by counting the number of frames 

(b) TIRTL data (a) Manually extracted data



 

17 

it takes a vehicle to cross four skip lines (130 ft), marked by red lines in figure 4. Speed 

estimates for 40 vehicles, of different classes, in the two available lanes were obtained 

using this approach. The results of this analysis are described in Results below. 

 

Figure 4. Screenshot. VirtualDub user interface for video-based speed estimates. 

RESULTS 

There were four types of errors typically observed in the evaluation of the TIRTL data. 

These errors types are listed in table 3. Results of the evaluation under different traffic and 

ambient conditions are described in the following subsections. 
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Table 3. Types of errors observed in the TIRTL data. 

Type of Error Description 

Vehicle-class misclassification Detected vehicle with wrong vehicle-class 

Missed vehicle Vehicle not counted by the detector 

Lane misclassification Detected vehicle with incorrect lane number 

Lane and vehicle-class 

misclassification 

Both lane and vehicle-class of the detected vehicle 

are incorrect 
 

Uncongested Flow During Regular Driving Conditions 

The base case with normal driving conditions and without any inclement weather 

conditions was from 10/30/2017. Figure 5 shows a plot of the manual cumulative counts 

with an overlapping “adjusted cumulative counts” from the TIRTL data, with time on the 

y-axis and cumulative count on the x-axis. In a cumulative curve plot, a missing vehicle or 

an extra vehicle would cause a permanent divergence. From such a plot, it is easy to see the 

overall aggregate effect of the misses/additions; however, it is difficult to separate out the 

“good” portions of the time series, where there were no errors, from the “bad” portions, 

where there are errors. Hence the cumulative counts in TIRTL were “adjusted” by the 

amount of the error at the end of a series of errors to make sure that the divergence was 

controlled and the lines only showed “gaps” or divergence where there were missing or 

overcounted data. The two lines overlap to a large extent. The results of the data 

verification are shown in table 4. The TIRTL vehicle counts match very well with the 

manual counts. The TIRTL detector missed only one vehicle during the 30-minute analysis 

period. The error (6.98 percent) was largely in the classification of the vehicles.  

Table 5 presents an analysis of the lane-wise variation of accuracy of counts over a total 

period of 29 minutes (09:02 AM – 09:22 AM and 05:00 PM – 05:09 PM). The error rate of 
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vehicle misclassification is observed to be higher for the lane farthest from the median. To 

check if the two datasets are statistically different, a paired t-test was undertaken for the 

1-minute aggregated counts. The paired t-test results indicate that there is not enough 

evidence to reject the null hypothesis that there is no significant difference between the 

TIRTL counts and manual counts under regular driving conditions, based on data from 

10/30/2017.  

 

Figure 5. Graph. Data from 09:02:03 AM to 09:22:03 AM, extracted during normal 

driving conditions. 

Table 4. Data verification results for regular day – 10/30/2017. 

Type of Error Count % Error 

Vehicle-class misclassification 56/802 6.98 

Lane misclassification 11/802 1.37 

Lane and vehicle misclassification 1/802 0.12 

Missed vehicles 3/802 0.37 
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Table 5. Data verification results lane-by-lane for regular day – 10/30/2017. 

Type of Error 
Lane 1 Lane 2 Lane 3 

Count % Error Count % Error Count % Error 

Vehicle-class misclassification 5/182 0.03% 21/327 6.42% 30/293 10.24% 

Lane misclassification 1/182 0.01% 4/327 1.22% 6/293 2.05% 

Lane and vehicle 

misclassification 

0/182 0.00% 0/327 0.00% 1/293 0.34% 

Missed vehicles 1/182 0.01% 1/327 0.31% 1/293 0.34% 

Extra detection by TIRTL1 7/182 0.04% 4/327 1.22% 7/293 2.39% 

1Not observable through video. 

Congested Flow During Construction 

Typically, on this portion of the freeway, there is very little congestion. To test the 

performance of TIRTL under low-speed and high-density traffic flow conditions, data from 

a day with construction activity were chosen. On this particular day, construction activity 

was ongoing in the right-most lane (i.e., the farthest lane from the median in the 

northbound direction). The results of this analysis, presented in table 6, show that the 

proportion of missed vehicles is marginally higher than under the regular flow conditions, 

but overall the error rates are still relatively low. The “adjusted cumulative count” plots 

(see figure 6) visually confirm the overlap of the data from TIRTL and the manual 

extraction. Table 7 provides an analysis of the lane-wise variation of accuracy. The paired 

t-test results conducted on 1-minute aggregates indicate that there is not enough evidence to 

reject the null hypothesis that there is no significant difference between the TIRTL counts 

and the manual counts under medium congestion. 
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Table 6. Data verification result for construction day – 10/31/2017. 

Type of Error Count % Error 

Vehicle-class misclassification 26/436 5.96 

Lane misclassification 0/436 0.00 

Lane and vehicle misclassification 0/436 0.00 

Missed vehicles 5/436 1.15 

 

 

Figure 6. Graph. Data from 11:25:06 AM to 11:35:09 AM, extracted during ongoing 

construction. 

Table 7. Data verification results lane-by-lane for construction day – 10/31/2017. 

  
Lane 1 Lane 2 Lane 3 

Count % Error Count % Error Count % Error 

Vehicle-class 

misclassification 
11/258 4.26 15/177 8.47 0/1 0.00 

Lane misclassification 0/258 0.00 0/177 0.00 0/1 0.00 

Lane and vehicle 

misclassification 
0/258 0.00 0/177 0.00 0/1 0.00 

Missed vehicles 3/258 1.16 2/177 1.13 0/1 0.00 

Extra detection by 

TIRTL1 
0/258 0.00 0/177 0.00 0/1 0.00 

1Not observable through video but assumed to be present. 
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Inclement Weather Conditions: Heavy Rainfall  

To test the performance of TIRTL under inclement weather conditions, a day with heavy 

rainfall (i.e., 11/09/2017) was selected. A total of 20 minutes of video data were extracted 

for the analysis (10:59 AM – 11:09 AM and 11:30 AM – 11:40 AM), beyond which 

visibility challenges prevented further processing of the video. The results of this analysis 

are summarized in table 8 and table 9. For this case, the proportion of missed vehicles was 

significantly higher than for the regular flow and congested flow cases. The results of a 

paired t-test conducted on 1-minute aggregated data show that there is sufficient evidence 

to reject the null hypothesis; thus, we conclude that the TIRTL data and the manual data are 

statistically different. An analysis of the error patterns revealed that when TIRTL missed 

vehicles, it occurred in batches. This pattern can be seen in figure 7 and figure 8. Note that 

figure 7 and figure 8 plots the “adjusted cumulative counts” of the TIRTL data over the 

actual cumulative counts from the manual data, as explained previously in the 

subsection on Uncongested Flow During Regular Driving Conditions. The majority of 

missed vehicles during this timeframe were heavy vehicles. It is hypothesized that these 

misses might be correlated to standing water on the road or water bouncing off the road and 

water coming off the tires of heavy vehicles. An interesting pattern about the proportion of 

missed vehicles also emerges from the lane-by-lane analysis of data accuracy given in 

table 9, where the majority of the missed vehicles were associated with lanes 2 and 3, 

which are farther from the median.  
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Table 8. Data verification result for rainy day – 11/09/2017. 

Type of Error Count % Error 

Vehicle-class misclassification 79/540 14.63% 

Lane misclassification 0/540 0.00% 

Lane and vehicle misclassification 0/540 0.00% 

Missed vehicles 86/540 15.93% 

 

Table 9. Data verification lane-by-lane on rainy day – 11/09/2017. 

Type of Error 
Lane 1 Lane 2 Lane 3 

Count % Error Count % Error Count % Error 

Vehicle-class 

misclassification 
4/152 2.63% 45/223 20.18% 30/165 18.18% 

Lane misclassification 0/152 0.00% 0/223 0.00% 0/165 0.00% 

Lane and vehicle 

misclassification 
0/152 0.00% 0/223 0.00% 0/165 0.00% 

Missed vehicles 16/152 10.53% 35/223 15.70% 35/165 21.21% 

Extra detection by 

TIRTL1 
1/152 0.66% 2/223 0.90% 1/165 0.61% 

1 Not observable through video but assumed to be present. 

 

Figure 7. Graph. Data from 10:59:00 AM to 11:09:00 AM, extracted during 

inclement weather conditions. 
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Figure 8. Graph. Data from 11:30:32 AM to 11:40:20 AM, extracted during 

inclement weather conditions. 

Inclement Weather Conditions: Heavy Snowfall  

The accuracy of TIRTL data was also evaluated under heavy snowfall conditions. On 

12/08/2017 there was heavy snowfall in the region around the test site. Thirty minutes of 

video data were extracted over two periods to focus on the periods with visible snow 

accumulation on the roadway, 12:57 PM to 01:17 PM and 01:57 PM to 02:08 PM. The 

results are presented in table 10 and table 11. The proportion of missed vehicles for this 

scenario is higher than any other scenario in this study. Again, the majority of these missed 

vehicles were missed by the detector during a short period of time, as can be seen from 

figure 9 and figure 10. Results of a paired t-test, conducted on 1-minute aggregated data, 

show that the two datasets are statistically different. Other errors, such as lane 

misclassification and vehicle misclassification errors, are at levels similar to the other 

scenarios.  
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Table 10. Data verification result for snowy day – 12/08/2017. 

Type of Error Count % Error 

Vehicle-class misclassification 71/866 8.20% 

Lane misclassification 2/866 0.23% 

Lane and vehicle misclassification 0/866 0.00% 

Missed vehicles 173/866 19.98% 

 

Table 11. Data verification lane-by-lane on snowy day – 12/08/2017. 

Type of Error 
Lane 1 Lane 2 Lane 3 

Count % Error Count % Error Count % Error 

Vehicle-class 

misclassification 
5/235 2.13% 33/376 8.78% 33/255 12.94% 

Lane misclassification 0/235 0.00% 1/376 0.27% 1/255 0.39% 

Lane and vehicle 

misclassification 
0/235 0.00% 0/376 0.00% 0/255 0.00% 

Missed vehicles 35/235 14.89% 81/376 21.54% 57/255 22.35% 

Extra detection by 

TIRTL1 
5/235 2.13% 9/376 2.39% 9/255 3.53% 

1 Not observable through video but assumed to be present. 

 

Figure 9. Graph. Data from 12:57 PM to 01:17 PM, extracted during snow 

conditions. 
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Figure 10. Graph. Data from 01:17 PM to 01:27 PM, extracted during snow 

conditions. 

Results of the analyses for all of the above-described traffic conditions are summarized in 

table 12. An interesting observation from the table is that during inclement weather 

conditions, TIRTL’s performance deteriorates. This is especially true for the number of 

vehicles missed and the vehicle-class classification. Other types of errors, such as lane 

misclassification, remain relatively comparable with and without inclement weather. Even 

with this high error rate during bad weather, TIRTL can have an advantage over video 

detection systems (VDSs) when a vehicle is not clearly observable through the camera 

view, the likelihood of which can increase with an increase in the number of heavy vehicles 

in the traffic mix because of the additional obscurity from the spray generated by the 

wheels of the heavy vehicles. 
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Table 12. Vehicle count data verification results. 

Driving 

Condition 

Date and 

Duration 

Vehicle-Class 

Misclassification1 

Lane 

Misclassification 

Lane & Vehicle 

Misclassification 
Missed 

Regular 
10/30/2017 

29 min 

56/802 

(6.98%) 

11/802 

(1.37%) 

1/802 

(0.12%) 

3/802 

(0.37%) 

Construction 

zone (less than 

20–30 mph) 

10/31/2017 

14 min 

7/436 

(1.60%) 

0/436 

(0.00%) 

0/436 

(0.00%) 

5/436 

(1.10%) 

Rain 
11/09/2017 

20 min 

79/540 

(14.63%) 

0/540 

(0.00%) 

0/540 

(0.00%) 

86/540 

(15.93%) 

Snow 
12/08/2017 

31 min 

81/866 

(9.35%) 

4/866 

(0.46%) 

0/866 

(0.00%) 

145/866 

(16.74%) 

1Vehicle-class misclassification: only the obvious cases, e.g., where 4-axle vehicle was counted as a passenger car, 

were considered. 

Comparison with Loop Detector 

The TIRTL data was compared with data from an inductive loop detector station adjacent 

to the deployment location of the TIRTL detector.  While the manual verification of the 

TIRTL data focused on a small sample, the cross-technology comparison took a higher-

level approach. Hourly aggregated data over a 27-day period from 10/23/2017 to 

11/18/2017 was used for the comparison.  Lane-by-lane data across the 15 FHWA vehicle 

classes were compared.  The results are presented in table x.  Since there is not sufficient 

evidence to consider either of the datasets as ground truth, the difference in magnitude 

between the vehicle counts in the two datasets is being called “difference” instead of 

“error”. The table presents the Mean Absolute Difference (MAD) and average hourly 

vehicle count for each lane and each class, as well as the total across all classes. However, 

several of the 1-hour periods had zero vehicles reported on a lane for one or more of the 

vehicles classes.   This made it impossible to compute a reliable Mean Absolute Percentage 

Difference (MAPD) because the calculation would create a division by zero error.  Hence a 

defect rate estimation method was used to capture the degree of disagreements between the 
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classification of the vehicles between the two technologies.  If for a certain hourly period 

on a certain day for a certain lane, the TIRTL count is not equal to the inductive loop count, 

the datapoint is tagged as a point with a disagreement.  The ratio of the number of points 

with disagreements to the total number of points gives the Gross Disagreement Rate. The 

following observations can be made from the results table: 

• Differences in classification of Passenger Cars are uniformly low across all lanes 

(below 10%)  

• There are larger percentage differences in the classification of other categories, 

even though the absolute values are small. 

• There are disagreements in all classes across all lanes, except class 7, 14, and 15, 

are > 10 %  

• Lane 1 has the least disagreements 
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Table 13. Vehicle count and classification comparison between TIRTL and inductive loop detectors. 
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1 Motorcycles 2  - 63.06% 2 3 84.67% 72.80% 3 6  - 81.30% 6 8 - 89.80% 10 

2 Passenger Cars 19 6.74% 96.14% 282 6 1.82% 90.26% 335 10 5.61% 95.83% 189 15 1.83% 95.52% 806 

3 Other Two-Axle Four-

Tire Single-Unit Vehicles 

9  - 90.73% 53 12 11.79% 96.91% 95 9 15.52% 94.74% 63 12 6.43% 95.98% 210 

4 Buses 1  - 18.24% 1 1  - 38.95% 5 1  - 43.43% 5 2  - 56.88% 10 

5 Two-Axle, Six-Tire, 

Single-Unit Trucks 

7  - 88.87% 2 6  - 93.35% 14 6  - 92.58% 12 17  - 98.92% 26 

6 Three-Axle Single-Unit 

Trucks 

1  - 5.41% 1 1  - 51.93% 4 2  - 61.05% 6 2  - 69.55% 9 

7 Four or More Axle 

Single-Unit Trucks 

1  - 0.46% 1 1  - 5.26% 1 1  - 6.65% 1 1  - 11.59% 1 

8 Four or Fewer Axle 

Single-Trailer Trucks 

4  - 85.63% 1 13  - 99.23% 9 14  - 99.54% 10 30 188.87% 100.00% 19 

9 Five-Axle Single-Trailer 

Trucks 

1  - 21.64% 2 5 4.83% 82.69% 90 5 4.35% 83.93% 115 9 3.77% 90.11% 206 

10 Six or More Axle Single-

Trailer Trucks 

1  - 1.85% 1 1  - 44.67% 1 2  - 73.57% 1 3  - 82.69% 2 
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  Lane 1 Lane 2 Lane 3 All 3 lanes 
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11 Five or Fewer Axle 

Multi-Trailer Trucks 

1  - 5.26% 1 4  - 87.48% 4 8  - 95.52% 8 11  - 99.07% 11 

12 Six-Axle Multi-Trailer 

Trucks 

1  - 1.39% 1 1  - 23.03% 4 1  - 25.04% 5 1  - 32.30% 9 

13 Seven or More Axle 

Multi-Trailer Trucks 

1  - 0.31% 0 1  - 9.89% 1 1  - 15.46% 1 1  - 22.87% 1 

14 Unused 0  - 0.00% 0 0  - 0.00% 0 0  - 0.00% 0 0  - 0.00% 0 

15 Unclassified Vehicle 1  - 0.15% 0 1  - 4.17% 1 1  - 4.48% 1 1  - 8.35% 1 

All All Vehicles 5 1.92% 87.17% 339 8 1.60% 93.20% 560 13 3.65% 97.22% 416 15 1.62% 97.53% 1313 
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Comparison with Currently Deployed Technologies 

For comparison with other currently deployed technologies, the results from a previous 

evaluation of accuracy of detectors in the Atlanta Region is provided in table 14 (Guin et 

al. 2013). The table contains data for inductive loop detectors used in Automatic Traffic 

Recorder (ATR) stations, VDS detectors and RTMS detectors. The lane-by-lane 

comparisons showed a wide range of errors varying across deployment locations, with 

mean absolute percentage errors (MAPE) in the range of 1-2 percent in ATR, 1-10 percent 

in VDS and 32-64 percent in RTMS for the set of detection stations evaluated. It is 

important to note that the evaluation presented in table 14 did not consider inclement 

weather conditions. In addition, the results in table 14 are presented for 1-hour aggregates. 

The average error magnitudes typically tend to be lower at higher levels of aggregation.  

The magnitude of errors reported for 1-minute aggregates for TIRTL, therefore, compare 

favorably with respect to the 1-hour average errors reported for the other detection 

technologies presented in table 14. 
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Table 14. VDS accuracy evaluation results summary from previous GDOT study 

(Guin et al. 2013). 

 

MPE Lower 95% Upper 95% MAPE Lower 95% Upper 95%
Lane 

Number
MPE MAPE

1 0.44% 1.58%

2 0.17% 0.94%

3 1.84% 1.93%

1 0.09% 1.85%

2 -0.84% 1.82%

3 -1.10% 1.96%

4 0.71% 1.87%

1 -4.34% 4.79%

2 0.44% 5.56%

3 5.61% 6.17%

1 -5.86% 6.38%

2 3.14% 4.43%

3 4.83% 4.98%

4 0.61% 1.81%

1 -3.05% 5.68%

2 0.05% 5.50%

3 2.94% 3.60%

4 1.65% 4.44%

1 -4.36% 5.27%

2 -3.28% 5.00%

3 3.10% 9.19%

4 2.26% 5.46%

1 -4.98% 8.82%

2 2.87% 7.69%

3 -4.19% 6.64%

4 1.16% 5.53%

1 -2.96% 10.18%

2 -0.59% 4.76%

3 0.98% 4.67%

4 -3.58% 4.62%

1 -6.84% 7.26%

2 -4.43% 7.14%

3 -0.56% 6.52%

1 -7.20% 7.59%

2 -6.67% 7.41%

3 -2.98% 4.25%

4 1.08% 7.04%

1 -4.19% 4.19%

2 0.05% 3.08%

3 -2.94% 6.57%

1 -3.50% 4.09%

2 -5.92% 7.94%

3 -0.42% 3.69%

1 13.16% 64.33%

2 -13.99% 40.63%

3 -17.92% 34.19%

4 -23.12% 32.56%

5 -26.58% 34.26%

6 -24.95% 32.52%

7 -24.76% 37.60%

38.92% 35.62% 42.23%

Pole Mounted/                  

I-75/I-85 Near 14th 

Street

Lane By Lane

13 VDS 7 -17.32% -22.96% -11.67%

-1.92% 5.23% 4.30% 6.16%

Pole Mounted/              

US-78 Westbound near 

Idlewood Road

4.40% 3.25% 5.07%

Pole Mounted/              

US-78 Eastbound near 

Idlewood Road

12 RTMS 3 -3.22% -4.53%

11 RTMS 3 -2.19% -3.36% -1.01%

-4.13% -5.78% -2.48% 6.67% 5.43% 7.90%

5.74% 8.19%

10 VDS 4

Gantry Mounted 

Median/                                 

I-285 Southbound near 

US78

9 VDS 4

Gantry Mounted 

Median/                                 

I-285 Northbound near 

US78

-3.84% -5.69% -1.99% 6.97%

36 feet offset Pole 

Mounted/                              

I-285 Southbound near 

Cascade Road

1.41% 7.24% 5.31% 9.17%

4.63% 7.54%

8 VDS 4 -1.34% -2.93% 0.26% 5.86% 4.92% 6.79%

7 VDS 4

36 feet offset Pole 

Mounted/                              

I-285 Northbound near 

Cascade Road

-1.11% -3.63%

5.77%

6 VDS 4

Gantry Mounted 

Median/                                 

I-285 Southbound near 

Cumberland Parkway

-0.68% -2.60% 1.23% 6.09%

5 VDS 4

Gantry Mounted Side/  

I-285 Northbound near 

Cumberland Parkway

0.43% -0.95% 1.80% 4.81% 3.85%

1.87% 1.52% 2.22%

0.77% 0.38% 1.16%

1.90% 4.36% 3.35% 5.37%

5.49%-1.22% 2.45%

-0.25% -0.76% 0.26%

4.58% 6.41%

No  Type
No of 

Lanes
Setup Style/Location

All Lanes

1.45% 1.18% 1.72%1 ATR 4

2 ATR 4

4 VDS 4 0.56% -0.79%

I-285 Northbound near 

Orchard Road

I-285 Southbound near 

Orchard Road

Pole Mounted/                  

I-285 Southbound near 

Orchard Road

Pole Mounted/                  

I-285 Northbound near 

Orchard Road

3 VDS 4 0.46%
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Speed Data Analysis 

For evaluation of speed measurement accuracy, data extracted manually from videos for 

40 vehicles, as described in the subsection on Speed Estimate Verification, were used for 

comparison with TIRTL data. Figure 11 shows a plot of the time series of the speeds from 

TIRTL and the manual extraction. The figure clearly shows that for most datapoints the 

TIRTL speeds and the manually extracted speeds have a constant difference. A one-way 

paired t-test was conducted to test if the estimates varied more than 5 mph (about 

10 percent of the average speed). The t-test results indicated that there is not enough 

evidence to reject the null hypothesis and, thus, estimates from the two datasets do not 

differ by more than 5 mph.  

 

Figure 11. Graph. Comparison of speed estimates (in mph) from TIRTL and 

manually extracted data. 
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CHAPTER 3. INCIDENT DATA FUSION FOR WAZE AND NAVIGATOR 

COMPARISON 

BACKGROUND 

Crowdsourced methods of incident detection using smartphone-based apps have recently 

started making inroads into the incident management process. Waze®, owned by Google, 

has teamed up with state, county, and city departments of transportation in an effort to help 

with the integration. While the benefits of such a partnership are obvious, crowdsourced 

data have some limitations and challenges. Amin-Naseri et al. (2018) discussed the 

problems associated with the lag and spatial inaccuracy associated with trying to report an 

incident in a mobile application while the vehicle is moving at a high speed, leading to an 

offset between the location of an incident and the location where it is reported. Vallejos 

et al. (2020) discussed the issues with redundant reports from Waze that create an 

overwhelming amount of unusable data. Xavier et al. (2016) pointed out the challenges of 

merging and consolidating the crowdsourced data with existing incident data sources from 

DOTs. 

To investigate the potential of crowdsourced smartphone app–based incident detection and 

notification, such as with Waze, in reducing the time to detection, a comparative analysis is 

performed using Waze and GDOT TMC’s NaviGAtor incident logs. An incident data 

fusion methodology is developed to facilitate the comparison. For this analysis, NaviGAtor 

event logs and Waze data in the Atlanta metro area were obtained for the period February 

to April 2018. This analysis focuses on incidents tagged as “accidents,” which are likely to 

have a higher impact on traffic flow. 
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DATA ACQUISITION  

Waze 

Through the Connected Citizens Program, Waze makes its data available to traffic 

management agencies. The incident data from Waze are obtained by polling at a 1-minute 

frequency. Each record has an associated timestamp, geolocation, and primary and 

secondary road names, along with other incident description characteristics.  

NaviGAtor 

The NaviGAtor dataset, generated by the Georgia TMC, consists of information about 

incidents reported by various sources such as Highway Emergency Response Operator 

(HERO), police department / 911, mobile operator, motorist call, and Georgia 511 operator. 

Each incident, identified by a unique incident ID, can have multiple records associated with 

it, where each record specifies a separate update or response action.  

DATA PREPROCESSING  

The preprocessing of the Waze data consisted of the following steps: 

1. The Waze data were converted from an XML format to CSV format and 

consolidated into a smaller number of files for ease of use in scripts in the rest of 

the analysis. 

2. The incidents were filtered to exclude everything except the “accident” type. 

3. Timestamps were converted from the GMT format to an EDT format for easy 

comparison with NaviGAtor data. 
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4. Multiple records for an incident were consolidated into a single record with a start 

and end time. 

The preprocessing of the NaviGAtor data consisted of the following steps: 

1. The NaviGAtor data were split into daily files corresponding to the Waze files. 

2. The end of the incident was determined using the last updated record for the 

incident or when the keyword “terminated” was detected. 

3. The incident was assigned the highest value of severity observed in any of the 

records corresponding to the incident in the original data. 

DATA FUSION  

There were four data dimensions that were leveraged for the data fusion process: 

timestamp, geolocation (i.e., latitude/longitude), road names (i.e., primary and secondary), 

and direction of travel. These components are discussed in further detail in the following 

subsections. 

Time Match 

The first criterion for matching was a time overlap. The distributions of duration of 

incidents in the two datasets are shown in figure 12 and figure 13.  

 

Figure 12. Histograms. Waze accident duration (Feb to Apr 2018). 
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Figure 13. Histograms. NaviGAtor accident duration (Feb to Apr 2018). 

The following strategies were explored for identifying candidate incidents in the Waze 

dataset that could potentially be the same incident as one in the NaviGAtor dataset: 

• Matching the start timestamp of a Waze incident to the interval over which a 

NaviGAtor incident occurs. 

• Matching the start timestamp of a Waze incident to the interval over which a 

NaviGAtor incident occurs plus an additional buffer interval at the beginning of 

the NaviGAtor incident. Buffer intervals of 30, 60, 90, and 120 minutes were 

tested. The assumption was that the detection of an incident in NaviGAtor could 

have some delay due to the limitation of resources. 

• Matching the overlaps of the incident duration periods. With the minimum and 

maximum timestamps in the Waze data, for a given incident, taken as the 

surrogate for the beginning and ending of a Waze incident, a minimum overlap of 

time periods was used as the matching criterion. Various overlap percentages of 1, 

5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 percent were tested. A 25 percent overlap 

was selected as the matching criteria. As seen in figure 14, 25 percent provides a 

reasonable cut-point where the matching rate shows limited decrease in the match 

rate with a continued increase in the required overlap. 
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Figure 14. Box plots. Numbers of matched results by overlapping rates for 30 days 

in April 2018. 

Location Match 

For the location match, the Euclidean distance between the latitude/longitude coordinates 

of the Waze incident and the NaviGAtor incident was computed, and thresholds of 0.5, 1, 

2, and 3 miles were tested. The gains in matches were not significant when the strictness of 

the threshold was reduced; therefore, the 0.5-mile threshold was used. 

Road Name Match 

Since the majority of the incident responses by the GDOT TMC are on freeways, there is 

usually a numerical portion of the road name (e.g., GA 400, I-75, etc.). The first pass of the 

filter matches the road name attributes in Waze and NaviGAtor using the numerical portion 

of the road name. If the numerical portion of the road name does not result in a match, then 

the text portion is used to detect a match. If a match is not detected on the primary 

roadway, the search is performed on the cross-street text. Where the text match was the 

cross street, the location match criterion was reduced to 0.5 mile to increase confidence in 

the match. 
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Direction of Travel 

The direction of travel, if specified within the road name attributes of both datasets, is used 

to further refine the matches. Where the direction of travel is not specified in Waze, or 

differs from that in NaviGAtor, the location match is further constrained to 0.5 mile to 

increase confidence in the match. 

Final Match 

The algorithm for the data fusion process is shown in figure 15. As seen, a match requires 

satisfying the time, roadway name or number, and distance criteria. 
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Figure 15. Flowchart. Data matching process. 
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RESULTS AND DISCUSSION 

Detection Rate and Time-to-Detection Comparison 

This analysis is based on incidents that are tagged as “accidents.” This restriction reduces 

the probability of spurious matches that can result from the sheer volume of the large 

number of low-impact incidents, such as shoulder stalls, in the datasets., The results of the 

comparison between the Waze data and the NaviGAtor data are shown in table 15. 

Table 15. Detection rate by the matching methodology. 

 NaviGAtor Waze 

Total number of records (original) 5,923 78,735 

Number of matched records 2,475 

(41.79%) 

2,475 

(3.14%) 

Number of records with Waze detection 

preceding NaviGAtor detection 

— 1,429 

(57.74%) 

Number of records with NaviGAtor detection 

preceding Waze detection 

1,046 

(42.26%) 

— 

— = not applicable 

During February through April 2018, 2,475 accidents were matched between the two 

datasets. This represents 41.79 percent of the total accidents in the NaviGAtor dataset, and 

3.14 percent of the total accidents in the Waze dataset. Among the 2,475 accidents, in 1,429 

cases, the Waze detection preceded NaviGAtor detection. In 1,046 cases, the NaviGAtor 

detection preceded Waze detection. Figure 16 shows the histograms by month from 

February through April as well as all 3 months together, for the detection time savings 

provided by Waze as compared to NaviGAtor. A negative number of seconds indicates that 

Waze detected the incident before NaviGAtor, while a positive number indicates that 

NaviGAtor detected it earlier. The patterns are fairly consistent over these months. 
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Figure 16. Histograms. Detection time savings for matched incidents 

(February through April 2018). 

To investigate the presence of any relationship of incident characteristics with the 

likelihood of earlier detection of an incident by Waze, the comparison data were plotted 

along multiple incident characteristic dimensions. Figure 17 shows the histograms of the 

time savings in detection split by the occurrence time of incidents, weekday vs. weekend. 

Figure 18 shows the histograms of the time savings in detection separated by incident 

severity as indicated in Waze. Figure 19 shows the split by incident severity as indicated in 

NaviGAtor. Figure 20 shows the split by the time of occurrence of incidents within the day, 

AM peak, PM peak, and off-peak. Figure 21 shows the split by peak vs. off-peak. 

Figure 22 and figure 23 show the split by incident durations as measured in Waze and 

February 2018 March 2018 

April 2018 February to April 2018 



 

43 

NaviGAtor, respectively. Figure 24 and figure 25 use an alternative categorization based on 

NaviGAtor incident duration. However, across all these plots, no conclusive evidence of 

meaningful correlation between the earlier detection by either method and the incident 

characteristics was observed. 

 
  (a)                                                                (b) 

Figure 17. Histograms. Detection time savings of matched accidents separated by: 

(a) weekdays, (b) weekends. 
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                                   (a)                                                             (b)                                                               (c) 

Figure 18. Histograms. Detection time savings of matched accidents separated by Waze accident severities: (a) major, 

(b) minor, (c) unspecified. 

 
                                   (a)                                                             (b)                                                             (c) 

Figure 19. Histograms. Detection time savings of matched accidents separated by NaviGAtor accident severities: (a) severity 1, 

(b) severity 2, (c) severity 3. 



 

45 

 
                                   (a)                                                           (b)                                                              (c) 

Figure 20. Histograms. Detection time savings of matched accidents separated by time of day: (a) AM peak, (b) PM peak, 

(c) off-peak. 

 
(a)                                                                   (b) 

Figure 21. Histograms. Detection time savings of matched accidents separated by traffic flow conditions: (a) peak, (b) off-peak. 
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                                   (a)                                                             (b)                                                                (c) 

Figure 22. Histograms. Detection time savings of matched accidents separated by Waze accident durations: (a) less than 

10 minutes, (b) more than 10 minutes but less than 2 hours, (c) more than 2 hours. 

 
                                   (a)                                                             (b)                                                                (c) 

Figure 23. Histograms. Matched accidents separated by NaviGAtor accident durations: (a) less than 20 minutes, (b) more than 

20 minutes but less than 1 hour, (c) more than 1 hour. 
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                                  (a)                                                           (b)                                                                (c) 

Figure 24. Histograms. Matched accidents separated by NaviGAtor accident durations: (a) less than 10 minutes, (b) more than 

10 minutes but less than 2 hours, (c) more than 2 hours. 

 
                                   (a)                                                             (b)                                                                (c) 

Figure 25. Histograms. Matched accidents separated by NaviGAtor accident durations: (a) less than 20 minutes, (b) more than 

20 minutes but less than 1 hour, (c) more than 1 hour. 
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WAZE AND NAVIGATOR DATA ANALYSIS IN METRO ATLANTA AND 

MACON 

To investigate the presence of any location-specific differences in the matching rates of 

Waze and NaviGAtor incidents, a comparative analysis was performed between the Atlanta 

Metro area and Macon, Georgia. The incidents were geo-filtered using a bounding box 

defined as [(34.55, −85.4), (33.15, −83.5)] for Metro Atlanta and [(32.97, −83.83), 

(32.67, −83.33)] for Macon. There were 54,237 recorded Waze accidents and 5,005 

recorded NaviGAtor accidents in Metro Atlanta and 921 recorded Waze accidents and 127 

recorded NaviGAtor accidents in Macon during the period February through April 2018, 

within the defined geo-fences. Figure 26 shows the original points plotted on maps in the 

top row and the matched points plotted on the maps in the bottom row. The results of the 

matching process are presented in table 16. The number of matched incidents separated by 

incident duration category are presented in table 17. 
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Figure 26. Plots. Waze and NaviGAtor accident plots and matched accident plots in 

Metro Atlanta and Macon areas. 

Table 16. Matched results by Metro Atlanta and Macon. 

 NaviGAtor Waze 

Total number of records (original) 5,923 78,735 

Number of matched records 2,475 

(41.79%) 

2,475 

(3.14%) 

Total number of records (Metro Atlanta) 5,005 54,237 

Number of matched records (Metro Atlanta) 2,286 

(45.67%) 

2,286 

(4.21%) 

Total number of records (Macon) 127 921 
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Table 17. Matched numbers of accidents by NaviGAtor accident duration 

(by second). 

 t ≤ 300 300 < t ≤ 900 900 < t ≤ 1800 t > 1800 Total 

Total 1,220 667 858 2,260 5,005 

Matched 3 222 523 1,517 2,286 

Matching 

rate (%) 
0.25 33.28 60.96 67.12 45.67 

 

Dataset Reduction to HERO Coverage Area 

Since the detection of incidents in NaviGAtor is restricted largely to the freeways, further 

filtering was employed to screen out the nonfreeway detections in Waze, so that the match 

percentages for Waze incidents are easier to interpret. The results of the filtering are shown 

in figure 27. To further refine this dataset, the incident datasets are then filtered with 

respect to the bounds of the HERO route coverage areas. The resulting dataset is plotted in 

figure 28. 

 

Figure 27. Plots. Waze and NaviGAtor accidents on Interstates and State Routes 

only. 
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Figure 28. Plots. Waze and NaviGAtor accidents on selected Interstates only. 

By applying the HERO route extent filter, the number of Waze accidents is reduced to 

21,616 from 54,237 and the number of NaviGAtor accidents is reduced to 4,430 from 

5,923.  

ANALYSIS USING WAZE REPORTING RELIABILITY ATTRIBUTES 

To investigate if there is evidence of impact of incident attributes recorded in Waze 

incidents, such as road type, report rating, confidence, and reliability on the matching 

process, bar charts of incident counts for each of these attributes were plotted and 

compared for “all” Waze incidents (in the HERO route–filtered dataset) versus the 

“matched” Waze incidents. From figure 29, figure 30, figure 31, and figure 32, the 

following observations can be made: 

• Incidents with lower report rating of 0 or 1 have a slightly lower match rate. 

• Incidents with a higher confidence number have a higher match rate. 
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• Incidents with a reliability of 10 have a higher match rate than the average. 

• Relationship of the road type attribute with match rate was nonconclusive. 
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Figure 29. Graphs. Accident counts by road type (Waze versus NaviGAtor Matched Waze). 
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Figure 30. Graphs. Accident counts by report rating (Waze versus NaviGAtor Matched Waze). 
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Figure 31. Graphs. Accident counts by confidence (Waze versus NaviGAtor Matched Waze). 
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Figure 32. Graphs. Accident counts by reliability (Waze versus NaviGAtor Matched Waze). 
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CHAPTER 4. TRAFFIC VISION ON I-475 

This section presents the results of the investigation of the feasibility of use and the 

potential benefits of a video-based AID technology relative to the existing detection 

technologies, such as incident reports via Georgia 511, closed-caption television (CCTV) 

monitoring by TMC operators, and incident reports by mobile HEROs. 

In order to evaluate the AID technology, detection rate (DR), noncritical alarm rate 

(NCAR, a combination of false, unverifiable, and noncritical alarms), and time to detection 

are used as performance measures. This chapter presents the development of the AID data 

analysis methodology to compare the performance of the video detection technology with 

the existing detection technologies by utilizing the Georgia NaviGAtor incident logs on 

I-475. The results of the investigation of how effective and efficient the AID technology is 

in detecting incidents is also presented in this chapter. The last section of the chapter is 

dedicated to the development of a methodology for filtering out incident alarms with low-

traffic impacts to aid in focusing on the high-impact incidents, thereby improving the 

efficiency of AID technologies in incident management. 

INTRODUCTION 

AID technologies seek to automate the detection of incidents and unusual conditions using 

real-time traffic data, such as those from vehicle detection equipment, infrared detectors, 

and inductive loop detectors. TMCs have employed AID technologies with varying degrees 

of success. With a desire to detect incidents as quickly as possible, such systems may be 
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perceived as a necessity where the number of detectors exceeds the reasonable ability to 

manually monitor devices. 

However, surveys on the use of incident detection technologies have indicated a lukewarm 

response by the industry to AID, primarily due to high false alarm rates (Williams and 

Guin 2007) and the inability of AID systems to distinguish between noncritical incidents, 

such as stopped or slowed traffic, and highly critical incidents, such as crashes. This survey 

is from 2007 and there has been significant technological advances in recent years. Also, 

the advent of mobile phones and crowdsourced data collection has significantly reduced 

TTD from means other than transportation agencies or public safety assets. However, the 

need for AID remains. For instance, under low volume conditions, few motorists may be 

available to make a report. Also, 911 is often not directly linked to traffic management, 

with incident management largely dependent on Georgia 511 calls, which may not be as 

frequent. Even in higher volume scenarios, it may take many valuable minutes for a call to 

be received and processed.  

Video-based AID has evolved rapidly over the last several years, with significant 

improvements in video quality and computing resources, resulting in an improved potential 

for automating the detection process. Even with ongoing technology improvements, 

however, it is recognized that AID technologies continue to struggle to separate those 

vehicles stopped on the road due to recurrent congestion from vehicles stopped due to a 

crash.  The effort reported in this chapter seeks to help address the noncritical alarm 

challenge with a focus on identifying those incidents with a high likelihood of being 

crashes or high-impact, enabling more robust AID. 
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BACKGROUND 

Many AID technology development studies have been conducted over the last few decades, 

seeking to improve detection rates while decreasing false alarms. Improvements have 

incorporated algorithmic advances, improved sensor technology, and application of 

advanced analysis, such as machine learning, deep learning, data fusion, etc. Each of these 

analyses is discussed in the following subsections. 

Detection Algorithms 

Incident detection may be categorized into four basic detection algorithm types, based on: 

comparative, statistical, time series, and traffic theory. Comparative algorithms, also known 

as pattern-based algorithms, compare current traffic parameters with historical or known 

conditions to identify potential abnormal or incident conditions. Example comparative 

algorithms include the decision tree algorithm (Payne and Tignor 1978) and the pattern 

recognition algorithm (Collins et al. 1979). Statistical algorithms utilize statistical methods 

to determine whether the observed data sufficiently deviates from that expected. Such 

unexpected changes in traffic characteristics are identified as an incident. Example 

statistical algorithms include the standard normal deviate algorithm (Dudek et al. 1974) and 

the Bayesian algorithm (Levin and Krause 1978). Time-series algorithms assume non-

incident traffic follows a predictable pattern over time, using sufficient deviations from this 

time-series pattern to indicate likely incidents. A common example of this approach is the 

auto-regressive integrated moving average (ARIMA) model (Ahmed and Cook 1979). 

Traffic theory–based algorithms utilize traffic flow theory to detect traffic behavior under 

incident conditions. Incident detection is triggered based on a comparison of observed 

traffic measurements and traffic model–based estimated traffic measurements. 
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Representative traffic theory–based algorithms include the dynamic model (Willsky et al. 

1980) and the catastrophe theory model (Gall and Hall 1989). 

Detection Sensor Technologies 

Historically, roadway detection has been passive, with in-roadway devices, such as 

inductive loops, and nonintrusive devices, such as video, microwave radar, ultrasonic, and 

passive infrared sensors. However, of these, video detection remains the dominant sensor 

technology utilized in incident detection. Various studies have been conducted to improve 

the overall performance of video-based AID. For instance, to overcome difficulties related 

to varying lighting conditions, reflections of the sun, fog, or snow, systems have been 

developed to combine video and thermal imaging cameras. Vermeulen (2014) 

demonstrated that thermal cameras experience minimal impact due to sun glare, headlights, 

shadows, underpasses, wet streets, snow, and many other conditions.  

Beyond these traditional sensors are emerging alternatives that take advantage of 

communication advances and connected vehicles. Smartphone technology, cellular 

networks, V2X (vehicle-to-everything), internet of things (IoT), global positioning systems 

(GPS), general packet radio service (GPRS), global system for mobile communications 

(GSM) modem, crowdsourced social media monitoring, etc. are all contributing to a vast 

expansion of the available detection technologies and approaches.  

Of these, V2X and crowdsourcing are receiving some of the most significant attention. For 

example, to address data collection delays and inaccuracy, Iqbal and Khan (2018)  

suggested using multiple traffic flow parameters via V2X communications. In their model, 

typical traffic characteristics, such as speed and lane changes, are collected, as well as 
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nontraditional parameters, such as acceleration, orientation, and deviation factors. The 

parameters are utilized for incident detection and determining the confidence in the 

detection. Other examples of utilizing V2X include Chen, Xu et al. (2016), who utilized 

vehicular ad hoc networks (VANETs) to collect traffic data and develop an approach for 

AID based on support vector machine (SVM), and Dogru and Subasi (2018), who 

simulated data collected from VANETs and utilized machine learning algorithms to detect 

incidents. 

Crowdsourcing information with mobile technologies offers great potential for better 

engaging the general public in transportation management. For example, Villela et al. 

(2018) researched a smart, interoperable decision support system (DSS) for emergency and 

crisis management based on mobile crowdsourcing information. Zuo et al. (2018) used a 

latent Dirichlet allocation (LDA) model to automatically classify incident-related tweets 

and incident types using Twitter data, including messages and geolocation information. 

Machine Learning Algorithms for Incident Detection  

Most incident detection algorithms focus on identifying traffic incident patterns derived 

from various sensor streams. Machine learning techniques allow the algorithms to “learn” 

(i.e., improve AID performance) as additional data are collected and analyzed, and tend to 

be highly applicable for the real-time needs of AID. 

For example, Dogru and Subasi (2018) exploited supervised ML algorithms, such as 

artificial neural networks (ANN), Support Vector Machine (SVM), and random forests 

(RFs) to develop models to distinguish incident from non-incident traffic data. Chen and 

Wang (2009) applied the decision tree technique of supervised ML algorithms in a 
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simulated environment based on traffic characteristics, including volume, speed, time 

headway, and occupancy. Liu et al. (2014) presented a random forest algorithm to reduce 

the noise of false incident alarms and to overcome training dataset overfitting problems. 

Wang et al. (2013) presented a hybrid approach to AID in transportation systems by 

combining time series analysis with ML techniques. Zhu et al. (2018) proposed the 

convolutional neural network (CNN) model for automatic detection of traffic incidents 

using traffic flow data in Central London, UK.  

However, as previously mentioned, even with these efforts and technological advances, 

deployed AID systems still tend to suffer from high alarm rates, where it is difficult to 

distinguish the small subset of critical alarms from noncritical alarms, creating, creating 

significant challenges in their field deployment and use. Thus, in this effort, the research 

team seeks to layer a cluster-based ML framework on top of an existing AID system with 

the intent of reducing low-impact noncritical incident alarm rates.  

AID SYSTEM (CASE STUDY) 

This study utilizes video-based AID system data for a 15.83-mile section of I-475 

(figure 33) during a 3-month period from 6/27/2018 through 9/25/2018. A total of 

186 cameras are located along this stretch of roadway with two to three cameras typically 

mounted on a single traffic pole, with each camera surveilling either the northbound or 

southbound traffic. When the AID system identifies an incident, it generates video clips 

and images, as well as records the following information: date; time; incident type as 

identified by the AID technology (stopped, congestion, slow, wrong-way, or pedestrian; see 
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figure 34); camera name (according to GDOT TMC naming convention); roadway 

direction (northbound or southbound); and location (shoulder, ramp, or lanes). 

 

(a) (b) 
Map credits: 

(a) https://ops.fhwa.dot.gov/freight/infrastructure/ismt/state_maps/states/images/nhfn_map/ga_georgia.jpg, 

(b) TrafficVision software, trafficvision.com, 2019 GDOT application. 

Figure 33. Maps. (a) I-475 location, (b) camera locations with AID system. 

Site  

Location  
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Figure 34. Photos. Examples of incident types (stopped, congestion, slow, 

wrong-way, and pedestrian). 

The five incident alarm types and thresholds are defined within the AID system settings as 

follows:  

• Stopped incident: indicates stopped vehicle/debris in the roadway if a vehicle or 

object is stationary for [30]1 seconds. 

• Congestion incident: indicates an incident if the congestion index score is above 

[30] or if the congestion index score changes from below [20] to above [80] in 

[30] seconds. 

• Slow incident: indicates an incident if:  

o Yellow alert: speeds stay below [25] mph for [30] seconds. 

o Red alert: speeds stay below [10] mph for [30] seconds. 

 
1 Threshold values shown in “[ ]” are the default values and may be changed by a system operator. Unless otherwise 

stated, the analysis presented in this report utilizes the default values. 
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• Wrong-way incident: indicates wrong-way vehicle movement where vehicle 

movement is detected in a direction opposite that expected in the given location. 

• Pedestrian incident: indicates pedestrian movement detected in the roadway. 

Data Overview 

Figure 35 provides the daily incident alarm counts for the study area over the 3-month 

study period. There are 91 days of the dataset for the study period with a total of 10,125 

incident alarms. The average number of daily incidents is 111.26, and the standard 

deviation is 27.25. The maximum daily incident count is 208 on 8/6/2018, and the 

minimum daily incident count is 40 on 9/25/2018. 

 

Figure 35. Graph. Daily incident alarm count for studied I-475 section, from 

6/27/2018 through 9/25/2018. 

Figure 36 provides the overall hourly distribution of incidents over 24 hours, as well as the 

distribution by direction, i.e., southbound in Figure 36 (b) and northbound in Figure 36 (c).  
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(a) 

 

(b) 

 

(c) 

Figure 36. Graphs. Hourly average incident alarm count for studied I-475 section, 

from 6/27/2018 through 9/25/2018: (a) total, (b) southbound, (c) northbound. 
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The average hourly incident per day on I-475 is 4.31, and the standard deviation is 2.36. 

Incident alarms are more frequent from 7:00 AM to 7:00 PM than the average hourly 

incident rate, with a fairly consistent peak rate between 9:00 AM and 4:00 PM. Again, it is 

seen that a system covering a larger portion of the Interstate system is not easily scalable 

given the number of alarms. 

The vast majority of reported AID alarms are stopped incidents (92.7 percent), followed by 

congestion (4.6 percent), slow (2.4 percent), and wrong-way (0.3 percent) incidents. For 

each reported alarm type, figure 37 provides the location categorization: shoulder, ramp, or 

active lanes. 

 

Figure 37. Chart. Location categorization per AID incident alarm type for studied 

I-475 section, from 6/27/2018 through 9/25/2018. 
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In figure 37 it is readily seen that the most prevalent alarm type is stopped incidents located 

on shoulders, comprising 77.4 percent of all alarms. The remaining 22.6 percent of alarms 

are distributed over the remaining categories.  

AID False Alarm Evaluation 

A key component of the undertaken study is an evaluation of the AID system’s false alarm 

rate. This evaluation focuses on false alarms, as an independent data source is not available 

to identify missed incidents, i.e., false negatives. 

For the AID false alarm rate evaluation, two analyses were conducted. First, alarms were 

manually reviewed, using the images and video clips provided by the video-based AID 

software. Second, these alarms were compared with incident logs from the existing incident 

management operations, based on Georgia 511 calls, public safety reports, and TMC 

operators identifying an incident. 

Manual Review of Alarm Video and Image Data 

For AID evaluation analysis using the images and video clips provided by the video-based 

AID software, two aspects of false alarms were considered: incident presence or type error, 

and incident area error.  

The incident type analysis included manually viewing the video and images to determine if 

an incident was identified where none occurred or if an incident was misidentified, e.g., a 

slow incident was reported where traffic was stopped. Identified errors consisted of 

predominantly two types: (1) other objects (e.g., lights, leaves, reflection on the camera 

lens) within the camera view triggered the AID false alarm; and (2) camera settings, 
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particularly camera angle, resulted in misidentification (e.g., traffic appeared slow-moving 

but was not). As reviewer judgement was required in identifying an alarm as false, the error 

had to be obvious to be considered. For instance, from visual inspection of the photo and 

video it is often difficult to differentiate between “congestion” and “stopped”; thus, such an 

error was rarely identified. Figure 38 shows some examples of scenarios that result in false 

alarms. 

 

Figure 38. Photos. Examples of false alarms due to: (a) a shift in camera view in a 

Pan-Tilt-Zoom camera, (b) movement of foliage, (c) a heavy-duty vehicle stopped on 

the shoulder. 

(a) Incident alarms for wrong-way driving are likely to be generated when there is a shift in 

camera view in a Pan-Tilt-Zoom camera. 

(b) Alarm was generated by movement of 

foliage.  

(c) Alarm for stopped incident on an active lane 

generated when a heavy-duty vehicle is stopped 

on the shoulder. 
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Incident area analysis confirmed the incident location (i.e., ramp, active lane, or shoulder), 

as well as confirmed if the incident roadway direction was correctly identified (i.e., 

northbound or southbound). Incident roadway location is critical in the evaluation of AID 

performance, as it is a key component in determining the incident severity and response. 

For example, a vehicle stopped in the active lanes may require a rapid emergency vehicle 

response, whereas a vehicle stopped in the shoulder may be sufficiently served by roadside 

assistance vehicles. Figure 39 provides the findings from the manual review of incident 

alarms. 

Due to the limitations of the data available for the manual verification process, a clear 

distinction must be made between false and nonverified alarms. The evaluation was 

dependent on the images and short video clips archived by the AID as part of the detection 

process logs. The view was limited to a small section of the roadway as seen by the AID 

camera. It is not possible to conclude with certainty that an alarm is false, if there is no 

evidence of a stopped vehicle, or debris on the roadway within this limited viewport. There 

is always a possibility that the disabled vehicle moved outside the view following the 

occurrence of the incident.  While a few cases could be identified with a high degree of 

certainty that they are false, such as those illustrated in figure 38Error! Reference source 

not found., the percentage of such cases is small. The cases where no evidence of an 

incident could be found are therefore referred to as unverifiable rather than false for the rest 

of this analysis.  
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(a) (b) 

Figure 39. Charts. Results of: (a) incident presence and type, (b) incident area 

analysis. 

Figure 39 (a) displays the proportion of true and unverifiable alarms detected by incident 

presence and type. Of the 10,125 incident alarms generated during the 3-month period, 

8,887 incident type alarms were true (87.8 percent); 1,227 incident alarms (12.1 percent) 

were unverifiable; and 11 alarms (0.1 percent) were undetermined, as the images and video 

clips were unavailable. Figure 39 (b) provides the location accuracy findings, with 

92.4 percent of alarms correctly located and 2.6 percent incorrectly located, and 507 alarms 

(5 percent) did not provide a detection lane or the video and images were unavailable. The 

majority of the location errors result from heavy-duty vehicles in the adjacent zones on the 

video, typically locations with flatter viewing angles, or when a vehicle stopped on the 

shoulder was identified as being in an active lane due to camera view angle. 

A critical issue in this evaluation, and the AID system, is that “crashes” are not one of the 

incident types. Rather, the AID system reports incident types of stop, congested, slow, and 

wrong-way. While crashes will most likely be identified as “stop” incidents, the reverse is 

Unverifiable Unverifiable 
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not true, in that most stop incidents (92.7 percent of all incidents) are not related to crashes. 

Thus, identifying crashes is a primary need for which the AID system does not provide an 

efficient solution in the current context, with the vast majority of incident alarms unrelated 

to crashes. 

AID Evaluation with Comparison Analysis with Existing Incident Logs 

To further explore AID in relation to crashes, the AID data are next compared to crashes 

identified though the Georgia 511 (NaviGAtor) incident logs. Georgia 511 is provided 

through the Georgia Department of Transportation and is housed at the GDOT TMC. The 

Georgia 511 logged incidents are detected by a variety of methods, such as operator-

detected (i.e., TMC operator observing highway video feeds), mobile operator (HERO, i.e. 

GDOT roadside assistance vehicles), motorist calls, police department / 911, etc. 

During the same 3-month period as the AID I-475 data collection, Georgia 511 generated 

104 incident logs (see figure 40). The detected incident logs include 12 crashes, 24 debris 

in roadway, 1 fire, 1 infrastructure issue, 65 stalled vehicles, and 1 unplanned (i.e., live 

animal presence) case. Of the 104 incidents, most incidents required temporary active lane 

or shoulder closures, as indicated in the TMC incident log system. It is recognized that 

crashes not captured by the existing Georgia 511 system or seen in the AID video clips will 

not be reflected in the subsequent analysis within this report; thus, a complete measure of 

missed crashes is not possible. 
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Figure 40. Graph. Count per incident type on NaviGAtor (n=104). 

The current comparison focuses on the 12 crashes identified through the Georgia 511 

system. To visually represent the comparison, a separate plot is developed for each of the 

12 crashes. The time (time incident was first logged); location (latitude and longitude, 

based on location reports in the incident log); and direction of travel for each incident was 

plotted. Next, all AID incidents (stopped, congestion, slowed, wrong-way, and pedestrian) 

within 5 miles and with a reported start time within 1 hour (before or after) of the given 

crash were plotted. The utilized AID time is the time at which the alarm was triggered, and 

the location plotted is of the camera reporting the alarm; thus, the location is commonly 

within 1,000 ft of the plotted point. Each plot is centered on the NaviGAtor incident, with 

±1 hour on the x-axis and ±5 miles (+ indicating upstream and – indicating downstream) on 

the y-axis, for a total 2-hour timeframe and 10-mile distance coverage. Figure 41 shows 

two example plots for crashes: (a) one recorded by Georgia 511 at 9:17 AM on August 2, 

2018, at approximate mile marker 9; and (b) one recorded at 6:16 PM on September 2, 

2018, at approximate mile marker 10. 
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(a) 

 

(b) 

Figure 41. Plots. Georgia 511 and AID incident alarm time–space plots: (a) with 

significant AID cluster, (b) without AID cluster. 

It is seen in figure 41 (a) that a number of AID alarms are triggered at or near the location 

of the crash, as well as within 45 minutes of the crash. A trend of the alarms moves 

upstream from the crash as time progresses. This cluster is likely associated with the crash 

and such a cluster provides a means to potentially identify crash incidents in AID data. 
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However, as seen in figure 41 (b), AID alarms do not always cluster around recorded 

crashes. Whether the lack of associated alarm clusters at some crashes is related to an AID 

algorithm issue or to incomplete camera coverage over the 16-mile section is unknown. 

Future efforts will seek to confirm coverage in these areas. (This is not readily done as this 

task is nontrivial, involving police records, site visits to confirm camera latitude/long and 

camera coverage, etc.) However, while not consistent, approximately half of the 

Georgia 511 crashes did seem to have an associated AID cluster, so this potential is further 

explored in the remainder of the chapter. 

METHODOLOGY (MACHINE LEARNING FRAMEWORK) 

The developed methodology seeks to identify alarms for high-impact incidents that need 

immediate attention from emergency and TMC responders. The methodology uses the co-

occurrence of multiple alarms in the time–space vicinity, to determine whether an incident 

is significant or nonsignificant in terms of the impact of the incident on traffic. The 

framework is built on top of an unsupervised clustering machine learning algorithm. 

Consolidation strategies and filters are developed as additional layers over the ML 

algorithm to further tune the algorithm and eliminate the majority of false, unverifiable, and 

noncritical alarms. Confidence values are assigned to alarms to further assist in prioritizing 

which alarms to confirm before dispatching a response unit and are particularly useful 

during busy periods. 

Cluster Analysis  

Density-based spatial clustering of applications with noise (DBSCAN) (Pedregosa et al. 

2011), a well-known unsupervised ML density-based clustering algorithm, was selected to 
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identify contiguous occurrences of multiple AID alarms. Unlike other clustering 

algorithms, such as the K-means clustering, DBSCAN does not require the number of 

clusters to be specified as an input parameter but rather infers the number of clusters as 

output depending on the data structure. DBSCAN requires two input parameters for 

execution: an epsilon value that defines the radius of the neighborhood around a point p, 

and the minimum number of points in the epsilon neighborhood (including point p). If 

point p satisfies the minimum number of points within the epsilon radius, a ‘cluster’ is 

formed, and point p is considered a ‘core point’. If other points in the cluster have also been 

identified as core points, then the respective clusters are joined to create a single joint 

cluster of all points. Points within a cluster that are not core points are labeled ‘boundary 

points’, and points not clustered are labeled ‘outliers’. The DBSCAN algorithm continues 

until all points have been checked for being a core point. 

The DBSCAN algorithm typically works on spatial clustering for a single factor, e.g., 

distance between points. The AID dataset, however, is multidimensional, including time 

and space factors. Therefore, by adding a temporal feature in DBSCAN, a modified 

version, DBSTCAN (density-based spatial and temporal clustering applications with 

noise), has been developed whereby a temporal epsilon parameter is added to the existing 

set of parameters in the DBSCAN algorithm. This is similar to the approach conducted by 

Birant and Kut (2007); however, instead of four parameters required for their algorithm, we 

simplified our algorithm with three parameters: epsilon_distance (from longitude and 

latitude information), epsilon_time, and min_points. This is well suited to the traffic-

monitoring camera infrastructure, which is an approximately fixed distance between traffic 

poles. The three parameters also offer increased computational efficiency, which is critical 
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in real-time operations. The DBSTCAN algorithm development is based on the AID 

clusters visually identified as discussed above. The analysis focuses on the northbound 

direction of travel, which contains more of the identified crashes.  

DBSTCAN Calibration 

As discussed, the DBSTCAN algorithm requires three parameters for cluster detection: the 

time dimension radius (epsilon_time), the space dimension radius (epsilon_distance), and 

the minimum number of points required in a cluster (min_points). For the space dimension 

radius, longitude and latitude values of the points are utilized to determine a Euclidian 

distance measurement. The objective of the DBSTCAN calibration was to find the best set 

of parameters to accurately identify clusters. To rate the performance of a parameter set, the 

performance metrics utilized are false alarm rate, detection rate, and mean time to detect 

(MTTD), which are in line with performance measures used in previous AID studies. For 

this analysis, the term false alarm is expanded to refer to an incident alarm where none 

exists (or is unverifiable) or the incident is low-impact and is therefore more appropriately 

referred to as the NCAR. The metric definitions are fine-tuned specifically to this study, as 

in equations 1–3:  

NCAR =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑤‐𝑖𝑚𝑝𝑎𝑐𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ℎ𝑖𝑔ℎ‐𝑖𝑚𝑝𝑎𝑐𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
 (1) 

DR =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ℎ𝑖𝑔ℎ‐𝑖𝑚𝑝𝑎𝑐𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ℎ𝑖𝑔ℎ‐𝑖𝑚𝑝𝑎𝑐𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
 (2) 

MTTD = ∑ (𝑡𝑑 − 𝑡𝑜
𝑛

𝑘=0
)/𝑛 (3) 
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where, 

n = number of defined clusters 

td = time when a cluster is detected by the algorithm 

to = time of occurrence of the first alarm in the cluster  

In terms of the performance metrics, the high-performance models are those that have the 

lowest NCAR with the highest DR while keeping MTTD within acceptable bounds. 

To apply these performance measures, it is necessary to know the number of “high-impact” 

clusters in the data. To determine this, all 3 months of the AID were plotted on time–space 

diagrams, as in figure 41, and clusters were manually identified. A total of 15 clusters were 

identified. Of these, 12 were in the northbound direction and 3 were in the southbound 

direction. For efficiency, the described analysis will focus on the northbound direction of 

travel. Of the 12 northbound clusters, 4 were associated with crashes, 1 was a stall, and 

1 was an animal in the roadway, as identified in Georgia 511. The remaining 6 were not in 

the Georgia 511 logs but will be retained in this analysis as the cluster of AID alarms is 

likely a significant traffic event worthy of review by a TMC operator. Thus, the set of 

12 clusters is considered the high-impact clusters. Any other clusters identified by 

DBSTCAN are considered low-impact clusters. 

A set of the 1,000-combination parameters was used to define a set of 1,000 DBSTCAN 

models that were applied to the AID dataset. The range and increments of the parameters 

were as follows:  
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• epsilon_time: 1 to 10 minutes in 1-minute increments. 

• epsilon_distance: 0.2 to 2.0 miles in 0.2-mile increments. 

• min_points: 1 to 10 points in increments of 1 point. 

The ranges were selected to achieve a reasonable balance between the applicability of the 

results and the computational requirements to run the experiment. A future effort may seek 

to further fine-tune the stated ranges. The increment sizes for epsilon_time and 

epsilon_distance were chosen based on findings in Taylor et al. (2017). 

DBSTCAN Parameter Selection Strategy (Model Selection Strategy) 

DBSTCAN results for the 1,000 models were analyzed to identify the optimal parameter 

set, i.e., those that resulted in the lowest NCAR and highest DR values, while maintaining 

an acceptable MTTD. Figure 42 shows the relationships between these three parameters in 

a scatter matrix plot, which is a grid of scatter plots used to visualize bivariate relations 

between combinations of variables. Each point in the scatter plot represents the results of 

the DBSTCAN run of a parameter set, with 1,000 points in each plot. (Plots that seem to 

have fewer points have multiple points in a single location). The histograms show the 

distribution of each numeric variable. 
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Figure 42. Scatter matrix plot. NCAR, DR, and MTTD for 1,000 DBSTCAN models. 

As expected, no single combination provided an optimal solution across parameters and 

clusters. DR and NCAR have a weak positive relationship, while NCAR and MTTD have a 

weak negative relationship. Hence, a solution based on an ensemble algorithm approach 

was envisioned. Different strategies for using multiple parameter sets, rather than a single 

parameter set, were investigated. A distributed decision model was thereby created to 

assign confidence values to alarms. 

Top 20 NCAR–TTD per Defined Cluster 

To reduce the number of dimensions of the optimization problem, a multistep process was 

utilized. First, from the 1,000 DBSTCAN runs, only the models that successfully detected 

at least one of the 12 visually identified northbound clusters, i.e., high-impact clusters, were 
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selected to be carried forward. From these remaining models, the top 2 values of the lowest 

TTD for each of the 12 high-impact clusters were identified.2 Next, for models with the 

identified TTDs for each high-impact cluster, those with the lowest NCAR were selected, 

10 for each TTD value. The selection process is illustrated in figure 43 (a). The number of 

selected “dots” within the yellow rectangles appears to be less than 20 because in several 

cases different models (i.e., DBSTCAN runs with different parameter sets) have identical 

NCAR and MTTD values and the points overlap in the plot. Figure 43 (b) shows the 

NCAR vs. TTD plot of the 240 models selected from the original pool of 1,000, 

corresponding to the 12 high-impact clusters. It was found that some parameter sets were 

selected for multiple high-impact clusters. After the elimination of duplicate selections, the 

number of unique parameter sets was 159. 

 
2 As a clarification, each model has an associated TTD for each cluster, with MTTD being the average TTD across 

clusters. 
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(a) 

 
 (b) 

Figure 43. Plots. (a) Selection process example (4th high-impact cluster), (b) NCAR 

vs. TTD for the 240 selected models. 
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Pseudo–Real-time Analysis 

While post hoc analysis is unconcerned with model runtime (within reason) and may utilize 

multiple days or months of data, real-time processing of the alarms to identify high-impact 

incidents must be computationally efficient. Thus, data processed within a given run is 

limited to ensure real-time processing speed. Since timely detection is critical, it is assumed 

that the algorithm would run once every minute and would process the last 1 hour of data. 

Real-time detection data older than an hour is considered to stagnate and would result in a 

TTD significantly longer than useful in practice. To replicate a real-time process, a sliding 

1-hour window that shifts in 1-minute increments is used to create the input data for the 

DBSTCAN models. This process is repeated for every 1-minute increment over the 90 days 

of the dataset for a total of 20,606,400 runs. The processing by 159 models generated 4,093 

clusters. However, a majority of these clusters had overlapping points. When clusters with 

overlapping points were consolidated, this yielded a total of 14 distinct clusters that 

overlapped with the identified 12 northbound high-impact clusters and 77 distinct clusters 

that did not overlap with high-impact clusters. Further investigation was made to 

understand why the model resulted in 14 clusters to capture the 12 visually identified 

clusters. For two of the visually identified clusters (second and eighth in the order of 

appearance), it was seen that the DBTSCAN model split these into two closely spaced 

clusters, as in figure 44. 
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(a) 

 

(b) 

Figure 44. Plots. Overlap of model-identified clusters with visually identified 

clusters: (a) second cluster, (b) eighth cluster.  

Figure 45 shows the number of models that detected each of the high-impact and 

nonrelevant clusters by chronological order for the study period. In most of the cases for 

the high-impact incidents, the number of models that detect the incident is quite high. 

However, in two of the high-impact incidents, where the original clusters are split into two, 
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the number of models that detect the first cluster in the pair is relatively low, at 10 and 20 

out of 159. For the remaining high-impact incidents, the number of identifying models is 

above 90 (out of 159), representing a detection rate above 0.6. In comparison, only 6 of the 

77 nonrelevant clusters have a detection ratio over 0.5.  

 

Figure 45. Plot. Number of combinations that detected clusters over the study 

period. 

Figure 46 shows the box-and-whiskers plot of the time required to detect each incident 

based on the estimated incident occurrence time and the cluster detection time. It is seen 

that while most of the incidents are characterized by a mean TTD below 15 minutes, 

incidents 1 and 8 for the high-impact incidents have a larger mean TTD. 
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(a) 

 
(b) 

Figure 46. Plots. TTD boxplot for: (a) high-impact clusters, (b) low-impact clusters. 
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Cluster Performance Index 

The combined DR, NCAR, and MTTD performance of the 159 models is reflected in 

figure 47. The figure confirms that the models with low NCARs (desirable) have high 

MTTDs (undesirable) and supports the hypothesis about the need for an ensemble approach 

whereby models with observed low MTTD can be used to identify a high-impact incident 

early, but would need to be confirmed either by the co-occurrence of multiple alarms or an 

alarm from a model with observed low NCAR.  

 

Figure 47. Plot. Performance metrics (DR, NCAR, and MTTD) by each 

combination. 

For this purpose, a framework is developed for strategically merging the output of the 

individual models in the ensemble to produce a single signal that can be used to trigger a 

timely alarm for a high-impact incident. A confidence index is first assigned to each model 

in the ensemble. The confidence index is calculated as a function of the model’s observed 

NCAR and DR values, as shown in equation 4. A weight value (a fraction ranging between 

0 and 1) is used in the formula, to control the balance of importance assigned to NCAR vs. 

DR in computing the confidence, with a higher weight value assigning more importance to 

NCAR and less importance to DR. 
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𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐼𝑛𝑑𝑒𝑥 (𝑖) = 𝑤𝑒𝑖𝑔ℎ𝑡 ×
𝑚𝑎𝑥(𝑁𝐶𝐴𝑅) − 𝑁𝐶𝐴𝑅(𝑖)

𝑚𝑎𝑥(𝑁𝐶𝐴𝑅)
+ (1 − 𝑤𝑒𝑖𝑔ℎ𝑡) × 𝐷𝑅(𝑖)

 (4) 

where,  

i = 1 to 159 (ID of 159 combinations) 

𝑁𝐶𝐴𝑅(𝑖)  =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑝𝑒𝑟 𝑚𝑜𝑑𝑒𝑙 (𝑖)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
 

DR(𝑖)  =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑝𝑒𝑟 𝑚𝑜𝑑𝑒𝑙 (𝑖)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
 

As defined earlier, the NCAR was defined with the number of relevant clusters as the 

denominator instead of the total clusters to ensure that the NCAR value truly reflects the 

ratio of noncritical to true signals rather than becoming a function of the total number of 

alarms. NCAR values could, therefore, exceed 1. In the confidence index, the value is 

normalized so the confidence index values can be bounded between 0 and 1. An impact 

index is then computed at each time step for the entire spatial area of coverage as shown in 

equation 5. The impact index combines the cluster-detection output of all models in the 

ensemble by aggregating the weighted outputs of the model with the confidence index of 

each model as the weight for that model’s output. 

𝐼𝑚𝑝𝑎𝑐𝑡 𝐼𝑛𝑑𝑒𝑥 (𝑖, 𝑡)  =  
 ∑ 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐼𝑛𝑑𝑒𝑥 (𝑖) × 𝑋(𝑖,𝑡)159

𝑖=1

∑ 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐼𝑛𝑑𝑒𝑥 (𝑖)159
𝑖=1

 (5) 

where, 

X(i,t) = 1 or 0 as a Boolean data type for representing a cluster detection at time t by 

model i. If a cluster is detected by model i at time t, X(i,t) = 1. Otherwise, X(i,t) = 0. 
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Figure 48 shows the impact index signals (with weight = 0.2) along the 90-day timeline, 

with blue columns indicating signals matching the manually identified high-impact 

incidents and red columns corresponding to signals matching the timestamps of the low-

impact incidents.  

For a closer look at the variation of the impact index over time (with weight = 0.2), an 

overlapping 120-minute timeline for each cluster identification is plotted in figure 49, 

where the x-axis represents the time, for each cluster identification, since the first AID 

alarm corresponding to the cluster. A clear pattern emerges. The majority of the high-

impact incident clusters indicated in blue (except the two cases that were created as a split 

of clusters 2 and 8) achieve a high impact index value within the first 20 minutes, most 

exceeding 0.6 within the first 10 minutes. On the other hand, the majority of the low-

impact incidents never exceed an impact index of 0.6, with the highest concentration in the 

zone below an impact index of 0.2. 
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Figure 48. Plot. Impact index of the derived clusters. 
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Figure 49. Plot. Impact index for high-impact (blue) and low-impact (red) incident clusters. 
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At this point, the effect of NCAR and DR is being captured successfully by the confidence 

index. It was, therefore, postulated that the initial filter applied during the development of 

the methodology, which reduced the number of models in the ensemble from 1,000 to 159, 

may not be necessary. The confidence index would automatically account for the variation 

of NCAR and DR and reduce the impact of the models that do not contribute to meaningful 

detection. However, the lowest value of each parameter, i.e., epsilon_time of 1, 

epsilon_distance of 0.2, and min_points of 1, were eliminated to improve the efficiency of 

the algorithm. 

The only constraint used was that a single point was not allowed to define a cluster; the 

models with min_points of 1 were eliminated, resulting in 766 models in the ensemble 

rather than 1,000. Figure 50 shows the inflation effect on the range of NCAR due to the 

expansion of the ensemble from 159 in figure 50 (a) to 766 in figure 50 (b).  

 

(a) (b) 

Figure 50. Scatter plots. NCAR and DR for: (a) 159-parameter combinations, 

(b) 766-combination set. 
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Figure 51 shows the plots of impact index values for the 14 + 77 clusters, obtained with 

different variations of weight in the confidence index formula in equation 4. The left 

column of plots is for the 159-model ensemble, and the right column is for the 766-model 

ensemble. It was observed that with the use of the 766-model ensemble, the effect of the 

weight in separating the high-impact and low-impact incidents was significantly reduced. 

The high- and low-impact clusters were separated successfully by the impact index value, 

regardless of the weight. The position of the cutoff point of the separation, however, 

depended on the weight. For example, for weight = 0, the separation is between 0.57 and 

0.65, whereas at weight = 1, the separation line can be drawn somewhere between 0.37 and 

0.42. To strike a balance, and improve the stability of the algorithm, a weight of 0.5 with 

the cutoff threshold value of 0.5 for the impact index would be preferred. But this would be 

a parameter that can be tuned as necessary based on experience and feedback by the 

operators using the system for incident management operations. Additionally, the system 

could be set to ignore alarms where the first point in an identified cluster exceeds some 

time limit (e.g., 10 or 15 minutes), as the information is becoming stagnant. 

The benefit of utilizing this ML approach to filter the AID alarms is significant. With this 

approach (with a weight of 0.5 and threshold of 0.5), for the given example, 7 out of the 14 

high-impact clusters would be identified with the first 10 minutes of the initial AID alarm. 

Additionally, only one noncritical alarm would occur. Thus, a TMC could reduce to a total 

of eight alarms out of the original 10,125, which is a decrease of 99.9 percent. While it is 

readily acknowledged this is a single example based on a limited set of data, the potential 

benefit in the practical application of an AID system seems significant. Certain alarms, 

such as wrong-way, may be treated differently by a TMC.   
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Figure 51. Plots. Confidence level at different weights (159-combination and 

766-combination sets). 



 

95 

CONCLUSIONS 

Overall, this study demonstrates the feasibility of using machine learning techniques to 

improve the efficiency of AIDs, minimizing noncritical alarms. The development of such a 

methodology is presented, using data from a corridor near Macon, Georgia, to demonstrate 

the methodology with a case study. During the development of the methodology, an 

extension of the conventional DBSCAN algorithm, which is typically used for cluster 

analysis, was proposed where the algorithm was extended to scan in a two-dimensional 

space (i.e., temporal, spatial) instead of a single dimension (i.e., spatial). The new algorithm 

developed was named DBTSCAN in recognition of the addition of the temporal aspect of 

the search. 

The study developed an ensemble algorithm that takes advantage of the strides of advances 

in computing power that have been made since the development of the first AID 

algorithms. In particular, this algorithm is developed with the target of scalability whereby 

multiple models can run in parallel on distributed resources with a final combination of the 

outputs from the model ensemble into a single number for triggering an alarm for a high-

impact incident that needs the operator’s attention. The study also develops the concepts of 

a confidence index to capture the historical NCAR and DR performance measures of the 

ensemble models into a single parameter, and the concept of an impact index to facilitate 

the separation of AID alarms of high-impact incidents from low-impact incidents.  

The advantage of this approach is that the methodology is agnostic to the underlying AID 

and can be used by incident management programs to enhance and manage the outputs 

from other AID algorithms. However, that also means that certain limitations of the 
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underlying AID carry through, as well, and impede overall accuracy. For example, if the 

underlying AID has some blind spots, which is quite possible in a video-based AID, the 

incidents might not be detected; the ML methodology developed in this study will not 

improve the probability of detecting such an incident. In addition, if the underlying AID 

generates a high volume of noncritical alarms with a certain spatial or temporal bias such 

that they trigger cluster-detection in a majority of the ensemble algorithms, then the current 

methodology will have to be enhanced with a feedback loop via an additional ML layer that 

will help identify the noncritical instances and provide a mechanism for the algorithm to 

continually retrain itself to eventually grow the capacity to filter out such instances by 

itself. 

Finally, the authors note a specific limitation of the dataset that was used in the case study. 

The data for this study came from a portion of the freeway that has very little recurrent 

congestion, which made it feasible for the study to clearly attribute instances of vehicle 

stoppage and queuing to incidents rather than recurrent bottlenecks. The transferability of 

the methodology needs to be established more firmly with further testing on more 

congested roadways. 
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CHAPTER 5. INCIDENT IMPACT ANALYSIS WITH INCIDENT DELAY 

ESTIMATION 

INTRODUCTION 

According to a study by the National Highway Traffic Safety Administration (NHTSA) in 

2010, the costs of crashes resulting from delays, increased fuel consumption, and 

environmental pollution “amount to $28 billion” (Blincoe et al. 2015). Presumably, the 

economic and social cost of all traffic incidents combined is much more than this figure. 

However, efficient incident management can help mitigate some of these impacts and, thus, 

warrants comprehensive analysis. This study explores the delay estimation aspect of 

incident analysis; specifically, it reviews incident delay estimation methodologies based on 

queueing and shockwave theory. Recognizing that there have been a number of theoretical 

examinations of these approaches, the current study aims to analyze the practicability and 

accuracy of several of these approaches for field use. For this evaluation, a microscopic 

simulation model of an incident, calibrated to field data, is used as the baseline for 

comparison, given that it is impractical to directly measure delay in the field to obtain the 

ground truth. The evaluation is followed by a regression-based predictive delay model that 

aims to identify important traffic and incident characteristics and aid in resource allocation 

for incident management. 

LITERATURE REVIEW 

The topic of incident-induced delay estimation has been studied extensively in the past. The 

literature shows different methodologies that have been used to estimate delay, one of 

which is based on the deterministic queueing theory (DQT) approach, which was first 
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discussed by Moskowitz and Newman (1962). Models based on queueing theory assume a 

linear arrival and departure curve and estimate the delay based on reduced capacity, 

demand flow, and incident duration. A typical queueing diagram used to estimate incident-

related delay is given in figure 52.  

 

Figure 52. Graph. Typical deterministic queueing diagram.  

(Moskowitz and Newman 1962) 

This simple deterministic approach was used by Morales (M. Morales 1986) and was also 

part of a submodel developed by Sullivan (Sullivan Edward 1997) to predict the delay due 

to an incident for different time distributions of traffic demand. This approach was 

employed to evaluate the benefits of the incident management program of Oregon’s 

Corridor Management Team (Bertini et al. 2004). A modified approach based on queueing 

theory was used by Guin et al. for evaluation of the NaviGAtor system in Georgia (Guin et 

al. 2007). For that evaluation, against the conventional assumption of constant reduced 

capacity, the study considered dynamic changes in reduced capacity during incident 
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clearance, and estimated delay for individual incidents rather than for an average incident; 

formulae used are given below in equations 6 to 9.  

Delay =
1

2
∗ (𝜇 − 𝜆) ∗ (𝑡𝑄 − (𝑡𝑅1 + 𝑡𝑅2))

2

+
1

2
∗ (𝜆 − 𝜇𝑅1) ∗ (𝑡𝑅1 + 𝑡𝑅2)2 +

1

2
 ∗  (𝜇𝑅1 − 𝜇𝑅2) ∗ (𝑡𝑅2

2 ) (6) 

𝑡𝑄= 𝑡𝑄1 + 𝑡𝑄2 (7) 

𝑡𝑄1 = 𝑡𝑅1 ∗
𝜇−𝜇𝑅1

𝜇−𝜆
 (8) 

𝑡𝑄2 = 𝑡𝑅2 ∗
𝜇−𝜇𝑅2

𝜇−𝜆
 (9) 

where, 

𝑡𝑅1  = incident duration from start of the incident until time of partial incident 

recovery (hr) 

𝑡𝑅2 = incident duration from partial incident recovery until roadway clearance (hr) 

𝑡𝑄 = total time duration in queue (hr) 

𝑡𝑄1= time in queue before partial incident recovery (hr) 

𝑡𝑄2= time in queue after partial incident recovery (hr) 

𝜆 = demand (vph) 

𝜇 = capacity (vph) 

𝜇𝑅1 = reduced capacity until partial incident recovery (vph) 

𝜇𝑅2 = reduced capacity from partial incident recovery until roadway clearance (vph) 

However, as discussed by Olmstead (1999), since the approach typically involves usage of 

an average incident duration, instead of an actual field-measured value, to estimate the 

delay, the final delay estimate from the DQT approach can be an underestimate. On the 
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other side, Skabardonis et al. (1996) noted that usage of an average incident duration value 

can lead to an overestimation because of the presence of a “few lengthy incidents.” Studies 

like Fu and Rilett (1997) and Sheu (2003) have addressed these concerns of the DQT-based 

approach by assuming the incident duration as a stochastic variable. Additionally, Fu and 

Rilett (1997) gave a method to update the probability distribution of incident duration 

depending on updated real-time traffic information. Still, stochastic modeling of incident 

characteristics in real time remains a major challenge. Other major concerns of a DQT-

based approach include: 

• The impractical assumption of linear arrival and departure curves. 

• The lack of consideration for effects of traffic diversion (Skabardonis et al. 1996). 

• Sensitivity to the choice of the location, as the delay estimates from this approach 

are measured at a specific location rather than the entire area under the incident’s 

influence. 

This last concern has been addressed in previous studies by using a shockwave-based 

approach to estimate the spatiotemporal extent of an incident and estimate the delay in the 

form of vehicle-hours lost due to reduction in average speed compared to a predetermined 

reference speed (Al-Deek et al. 1995; Snelder et al. 2013; Z. Chen, Liu, et al. 2016; 

Skabardonis et al. 1996). Skabardonis et al. (1996) used this approach to evaluate the 

benefits of the Freeway Service Patrol (FSP) in Los Angeles, California; formulae used in 

their study are given in equations 10 and 11. For delay estimation using these equations, the 

freeway section under the incident’s influence was divided into multiple short segments, 

and delay was estimated for each segment and then summed to obtain the total delay 

(Skabardonis et al. 1996; Al-Deek et al. 1995). Algorithms based on shockwave theory 
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were first discussed in Messer et al. (1973) and Wirasinghe (1978), where the authors use 

estimates of shockwave speeds and time–space diagrams to estimate the delay. Al-Deek 

et al. (1995) and Chen et al. (2016) also sought to segregate the delay due to a primary and 

a secondary incident, under the assumption of linear shockwaves. Al-Deek et al. (1995) 

justified the assumption of linear shockwaves by concluding that the assumption can only 

lead to an overestimation of congestion boundaries, which would increase the 

computational effort required to estimate delay in real time but would not change the final 

delay estimate. Chow (1976)  compared these two approaches, shockwave-based and 

queueing theory, and found that under the assumption of time-independent density, both 

approaches give the same result. Chow (1976) also stated that for time-dependent traffic 

density, “shockwave analysis has more physical meaning.” A glance at the formula (see 

equation 10) used in Skabardonis et al. (1996) suggests that the methodology is not 

applicable for an all-lanes-blocked incident, where the current average speed can go to 

zero. Also, the formula suggests usage of spot speed measurements, which implies the 

assumption of uniform distribution for instantaneous speeds between two adjacent detector 

stations. This assumption can be unrealistic for traffic in transition from a stable to an 

unstable state, such as in the case of an incident. 

𝐷𝑘𝑖= 𝐿𝑘
𝑡

60
𝑄𝑘𝑖 (

1

𝑣𝑘𝑖
−

1

𝑣𝑘𝑖𝑓
) for 0<vki<vkif  (10) 

D = ∑ ∑ 𝐷𝑘𝑖
𝑚
𝑖=1

𝑛
𝑘=1  (11) 
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where, 

k = freeway segment, k = 1,2,…n 

i = time interval, i = 1,2,...m 

Qki = traffic volume (vph) on segment k and time interval i  

Lk = length (miles) of freeway segment k  

vki = average travel speed (mph) of segment k during time interval i  

vkif = average travel speed under prevailing incident-free conditions of segment k during 

time interval i 

t = time (minutes) interval length 

Dki = delay (vehicle-hour) perceived on segment k during time interval i 

D = total incident delay (vehicle-hour) 

 Alternatively, Lawson et al. (1997) used the difference in cumulative counts at the 

bottleneck and an upstream location to estimate the delay. A schematic diagram of this 

approach is given in figure 53, where A(t) and D(t), respectively, are typical arrival and 

departure curves during an active bottleneck, and V(t) represents a “virtual arrival curve” 

constructed by shifting A(t) along the time axis by the magnitude of free-flow travel time. 

In that study, the authors have also explained the difference in “total time spent in queue” 

and “total delay,” which they say is often “confused in the literature” (Lawson et al. 1997). 

Delay using this approach can be calculated using equations 12–15. A modified form of 

this approach was used in Wang et al. (2010) where, instead of a virtual arrival curve as in 

Lawson et al. (1997), a downstream curve for an incident-free scenario was constructed via 

a regression technique and then used to estimate the delay. While this approach is easy to 

implement and is promising for real-time implementation, the viability of this approach is 
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contingent on available count data quality. Previous studies by Guensler et al. (2013) and 

Suh et al. (2015) on count data quality, report that data inconsistency rates between video 

detection systems can be more than 18 percent (Guensler et al. 2013). Such high levels of 

inconsistency in count data can render the approach infeasible for application. 

 

Figure 53. Graph. Typical arrival and departure curves during an active bottleneck. 

 

 

ATi = ∑ 𝐴𝑡𝑖
𝑡=𝑇
𝑡=0  (12) 

DTi = ∑ 𝐷𝑡𝑖
𝑡=𝑇
𝑡=0  

TTTi = (𝐴𝑇𝑖 − 𝐷𝑇𝑖) ∗ ∆𝑡 (13) 

TFTTi = (DTi − D(T-1)i) * (FTi) (14) 

DETi = 𝑇𝑇𝑇𝑖 − TFTTi (15) 

TDEi = ∑ 𝐷𝐸𝑡𝑖
𝑡=𝑇
𝑡=0  
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where,  

T = current time (or time at which travel time calculation is being made) 

t = time interval, t = 0,1,…,T−1,T 

ATi = cumulative upstream arrivals on segment i from t = 0 to t = T 

DTi = cumulative downstream arrivals on segment i from t = 0 to t = T 

TTTi = total travel time on segment i during time interval T 

∆t = length of a time interval 

TFTTi = aggregate total free-flow travel time for segment i over interval T−1 to T 

FTi = estimated free-flow travel time for a vehicle over segment i 

𝐷𝐸𝑇𝑖 = delay experienced on segment i over interval T−1 to T 

TDEi = total delay experience over segment i from time t = 0 to time t = T 

In addition to the above-described macroscopic methods to estimate delay, many studies 

have used microscopic traffic simulation for incident-related delay estimation. Examples of 

such studies are: 

• Evaluation of The Hoosier Helper Freeway Service Patrol (Latoski Steven et al. 

1999). 

• Evaluation of incident response team by Carson et al. (Carson et al. 1999). 

• Other studies, such as Birst and Smadi (1999), Gillen (2001), and Khattak and 

Rouphail (2004).  

Approaches based on traffic simulation provide valuable insights for an individual incident 

but are impractical when it comes to analyzing a large number of incidents with a wide 
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variation of ambient conditions. Nevertheless, due to lack of ground truth, microscopic 

simulation has been used in this study for baseline comparison.  

DETECTOR DATA INCONSISTENCY 

As part of the current study, the data inconsistency as noted by Guenseler et al. (2013) and 

Suh et al. (2015) was further investigated. For example, traffic count and speed data on a 

1-mile section of the I-285 northbound freeway corridor (at approximately mile marker 43) 

in Atlanta, Georgia, was examined. Three adjacent VDS stations within this roadway 

section, without any intermediate corridor access or egress points, are shown in figure 54, 

namely: GDOT-STN-2851970, GDOT-STN-2851971, and GDOT-STN-2851972, listed in 

order of direction of travel. For this site, a general pattern has been observed where GDOT-

STN-2851971 and GDOT-STN-2851970, respectively, give an over- and undercount 

estimate compared to GDOT-STN-2851972. The pattern can also be observed for a typical 

day (04/30/2018) in figure 55. This data inconsistency is seen to be further exacerbated 

during incident and inclement-weather conditions. This issue is illustrated in the cumulative 

count curves for the three stations on one such incident day (04/23/2018) in figure 56. 

There were four incidents on that day, two of which occurred during the morning peak 

hour, and the others were detected at approximately 4:30 PM and 5:00 PM, respectively. 

The evening peak hour incidents were detected at locations immediately downstream of 

station GDOT-STN-2851972. From figure 56, it can be observed that the order of count 

differences between the three stations over the duration of 24 hours may be conservatively 

estimated as approximately 8,000 vehicles. Furthermore, the cumulative curves are not 

sequential according to expectations; GDOT-STN-2851970’s curve is lying below both 
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GDOT-STN-2851971 and GDOT-STN-2851972. With such differences it begins to 

become apparent how these errors can significantly impact any delay estimations. 

As discussed in previous studies (Suh et al. 2015; Bonneson and Abbas 2002; Martin et al. 

2004; Rhodes et al. 2006). Such variability in data quality across locations and over time 

makes it difficult to rectify these inconsistencies using a “uniform correction factor” (Suh 

et al. 2015). Usage of a calibration factor, even when one is created specific to each site, 

makes the calculated delay highly sensitive to even small calibration errors and limits the 

ability to estimate delay in real time. More importantly, with the error level depending on 

the occlusion, which is a function of the density, a single calibration factor is not valid 

throughout the day; this makes the development of the calibration factors quite arduous, as 

well. 

  

Figure 54. Map. GDOT detection station camera locations on one-mile section of the 

I-285 northbound freeway corridor (at approximately mile marker 43), Atlanta, 

Georgia. Source: Google Earth 
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Figure 55. Graph. Cumulative count curve for a typical day (04/30/2018) at the site. 

 

Figure 56. Graph. Cumulative count curve for an incident day (04/23/2018) at the 

site. 
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COMPARISON  

For comparison of delay estimation methodologies, a Vissim® model was calibrated to 

simulate a real-life incident. The calibration was more notional than rigid in the sense that 

the throughput and capacity drops during the incident were reflected closely, but the 

demand used was based on flows from a typical day, instead of the demand on the incident 

day, which was reduced due to diversions from upstream ramps. Once calibrated, a 

comparative analysis between the queuing models and the simulated results for the range of 

demands and incident lengths was performed.  

Incident data were obtained from NaviGAtor, the advanced traffic management system 

owned and operated by the Georgia Department of Transportation (Wells 2016). The 

incident occurred at I-285 and SR-6 Camp Creek Parkway, as shown in figure 57 (a), in the 

southbound direction, on April 19, 2018. According to the NaviGAtor incident logs, the 

incident was detected at 4:15 PM; however, the data show a continuous drop in average 

speed after 3:55 PM, as can be observed from figure 57 (b). This suggests that the incident 

occurred around 3:55 PM and was not reported (or recorded) until 4:15 PM. According to 

the incident logs, the roadway was cleared at 7:33 PM and the shoulder was cleared in 

another 32 minutes, which makes the incident duration equal to 250 minutes, using the start 

time as 3:55 PM. At the start of the incident, all lanes were blocked and after approximately 

119 minutes one lane was opened (closest to the median). The developed model simulated 

an approximately 5-mile section along I-285. A 50-mile-long upstream freeway corridor 

consisting of four lanes without any on/off ramps was appended to the 5-mile section to 

ensure vehicles could queue within the model network, allowing for their reflection in the 

delay estimation. It is recognized that such queuing would not occur in the field due to 
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dynamic rerouting of vehicles to avoid the incident-related delay; however, the intent of 

this analysis to compare delay estimation approaches requires simplifying out confounding 

factors such as rerouting. Similarly, the corridor Vissim® empirical distribution for desired 

speed was set with a lower and upper bound equal to 69.90 and 70 mph, respectively, 

reflecting the observed freeway free-flow speed. While this is likely a narrower desired 

speed band than that in the field, this was chosen to allow for a more direct comparison to 

the queuing model, eliminating desired speed variability as a confounding variable, as 

Vissim® defines delay as the difference between desired and actual travel time (PTV 

2018a). The travel time in Vissim® is recorded through vehicle travel-time segments and 

data collection points, which were set up every one-third mile. The length of a travel-time 

measurement segment represents the typical distance between adjacent VDS stations in the 

NaviGAtor system (Guensler et al. 2013). Data collection frequency was set at 1 minute for 

this model. 
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(a) 

 
(b) 

Figure 57. Map and graph. (a) Incident location for event ID 1164269 on 04/19/2018 

detected at 4:15 PM (Source: Google Earth), (b) average speed (in mph) during 

incident day vs. non-incident day. 

 

Incident Location 
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The corridor was first calibrated for a saturation flow equal to observed throughput at the 

incident location, following the procedure described in Hunter et al. (Hunter et al. 2017). 

The vehicle input for the corridor was set according to the throughput curve observed at the 

incident location for an incident-free day, April 5, 2018, which was the same day of the 

week but 2 weeks prior. The incident was simulated by creating a bottleneck using parking 

lots and parking routes, with parking duration assigned to each parking lot according to the 

block duration of that particular lane (PTV 2018b).  

The timeline of the simulation can be traced through figure 58 and figure 59, which show 

the field observed and simulated aggregated vehicle counts and average speed (mph) for 

the incident and incident-free day, respectively, at the incident location. Additionally, for 

comparison, Figure 58 and figure 59 also show count and average speed from a station near 

the input location of the Vissim® network. The incident was initiated in Vissim® after a 

warmup period of 1.67 hr and then closely followed the incident timeline obtained from the 

NaviGAtor incident logs. Field data at the incident location showed lower throughput than 

the expected capacity when only a single lane was open during the interval from partial 

incident recovery to complete clearance, which indicates the occurrence of some 

rubbernecking, lane shifting, partial blockage of the “open” lane, or other effects during 

that interval. To simulate this reduced capacity, the headway distribution of the upstream 

link was changed for this interval. However, reviewing figure 58 and figure 59, at 

approximately 6:00 PM, it is seen that the model still somewhat overestimates queue 

discharge, although speed is well matched. Assuming the same arriving traffic as on the 

non-incident day (i.e., no rerouting), the experiment showed that free flow was restored 

6.25 hr after the incident had been cleared and the back of the queue reached about 
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32.67 miles upstream of the incident location before dissipating completely. As is clear 

from figure 59, free-flow speed at the site itself was restored at around 8:45 PM. From the 

lack of difference between the throughput curves beyond 8:45 PM for the incident day and 

the non-incident day in figure 58, it is clear that significant diversion did occur. Thus, the 

Vissim® delay is much higher than the delay experienced on the freeway. However, during 

peak periods, most roadways are already operating near their capacity and the traffic 

diversion process effectively distributes the delay over more vehicles and alternate 

facilities. Residual capacity in the network used by the diversion paths would mitigate 

some part of the delay; however, in many instances the rerouting serves to move the delay 

from the freeway facility to alternate facilities, rather than eliminate the delay. 
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Figure 58. Graph. Vehicle count (aggregated over 15 min) of the Vissim® model and the VDS station at incident location for 

the incident day and incident-free day. 
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Figure 59. Graph. Average per lane speed (mph) of the Vissim® model and the VDS station at incident location for the 

incident day and incident-free day. 
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Delay Estimation Results  

To compare the delay estimates from Vissim® to that from queueing theory, formulae 

described in Guin et al. were used, as they account for partial incident recovery (Guin et al. 

2007) These formulae are provided in equations 6-9 for ease of reference. For this equation, 

𝑡𝑅1, 𝑡𝑅2, were assigned the values of 1.98 hr, 1.6 hr, and 0 vph, respectively, and 𝜇 and 𝜇𝑅2 

were estimated using queue discharge flow from the station in the simulation located 

immediately downstream to the incident location. Demand was estimated using average 

throughput observed at the station where the back of the queue was traced in the model. 

Typically, there are challenges with using the throughput as a reflection of demand, as 

observed throughput is generally constrained by recurrent congestion for implementation of 

the approach with field data. However, that is not necessarily a major concern for this 

particular application case where the removal of the recurrent congestion-related delay 

from the measured delay would be desirable to help isolate the incident-related delay. 

Nonetheless, at this site, the non-incident day experienced free-flow speeds over the period 

of interest, and it would be safe to assume that the throughput was an accurate reflection of 

the total demand, assuming zero diversion. 

As discussed in the Literature Review section, two variants of the incident delay estimation 

methodologies based on shockwave theory—one based on current average speed and 

another on cumulative counts—were also tested. These variants, respectively, will 

henceforth be referred to as the approaches based on ‘difference-in-speed’ and ‘difference-

in-cumulative count’ for the remainder of this chapter. For testing difference-in-speed and 

difference-in-cumulative counts, equations 10–11 and equations 12–14 were used, 
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respectively. Figure 60 shows a time series of the calculated delays using the difference-in-

speed and difference-in-cumulative count approaches for one of the ⅓-mile-long segments. 

The horizontal line observed for delay estimated using the difference-in-cumulative count 

approach corresponds to the delay experienced during complete blockage of the roadway; 

the difference-in-speed approach fails to capture any delay during the same period since no 

vehicles were crossing the detection points. The results of this comparison are shown in 

Figure 61 and Figure 62, which, respectively, show the average of total delay estimate from 

three replications in vehicle-hours and the spatial distribution of this delay for each 

segment for one of the replications. 

Using delay estimates from Vissim® as the baseline, the approaches based on difference-

in-speed, queueing theory, and difference-in-cumulative counts gave average differences of 

about 87, 45, and, 0.04 percent, respectively, for three replications. The severe 

underestimation by the difference-in-speed approach can be attributed to the application not 

meeting the underlying assumption of this approach. This approach assumes the speeds 

throughout the segment between consecutive detection points are the same, and equal to the 

speed at the detection point; i.e., the traffic is homogeneous. Additionally, the average 

travel speed must be sufficient for a vehicle to traverse a time segment within a single time 

interval. However, under severe congestion, as in the given case study, with speeds at or 

approaching zero for extended periods, this condition is not met. The underestimation for 

the delay estimated using the queueing theory approach is predominately a result of the 

assumption of a single constant arrival rate. This assumption fails to capture the variability 

in demand or, in this case, throughput. As is known, the magnitude of underestimation 

could be reduced (potentially significantly) by utilizing a series of arrival rates to better fit 
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observations. As for the underestimation associated with the difference-in-cumulative 

counts approach, it can partially be explained by the difference in discharge rates before 

and after the incident. Presumably, this error could be reduced by collecting traffic counts 

more frequently, but this assertion needs further study. 
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Figure 60. Graphs. Delay (veh-hr) estimation using ‘difference-in-cumulative counts’ and ‘difference-in-speed’ approaches for 

station #160. 
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Figure 61. Graph. Total delay (veh-hr) estimated using different estimation methods. 
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Figure 62. Graph. Spatial distribution of delay (veh-hr) estimated from different methods. 
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REGRESSION MODEL 

The above validation experiment exhibited that delay estimates from commonly used 

approaches are likely to be erroneous even with fairly well controlled variability in a 

simulation environment. The most easy-to-use method based on spot speeds yields the 

largest errors. The best estimates are generated by the cumulative-count method; however, 

the weakness of this method is that it relies on the counts to be very precise, to the extent 

that conservation of vehicles can be validated. However, results presented in figure 5 show 

that such an expectation is very likely unrealistic under field conditions, especially where 

the resources available for maintaining a large system of detectors are understandably 

constrained.  

This study has, therefore, developed a regression-based predictive model for incident delay 

to rapidly obtain delay estimates for incidents with varying characteristics occurring under 

different base conditions. The model can be helpful for resource allocation during incident 

management, especially in the case of poor data quality. Previously, some studies have 

developed regression models to estimate incident delay. For example, Garib et al. (1997)  

developed two regression models to predict incident delay. These models were developed 

based on relevant incident, traffic, weather, and geometric characteristics, and delay 

estimates calculated based on equations 10–11. However, we have seen that the incident 

delay estimates generated by that approach could have a high degree of error due to 

heterogeneity in traffic. For the current study, therefore, data produced from simulation of 

different incident scenarios have been used. While the simulation might not be completely 

reflective of field conditions, such as drivers using shoulder lanes to bypass queues, or 

other geometric conditions specific to an incident site, the results do not suffer from the 
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field data measurement errors and can be demonstrated to be fairly closely reflective of 

“typical” conditions. The simulation scenarios were produced using a combination of 

independent variables, namely, throughput demand (in vehicle/hr/lane), total number of 

lanes available to travel in a direction, number of lanes blocked, and incident duration. An 

earlier study by Hadi et al. (2007) had found incident location to be an insignificant 

variable for “reduction in capacity” for Vissim® simulations. Therefore, incident location 

was not used as a variable in this model. The analysis considered all independent variables 

as deterministic.  

Since simulation of an exhaustive set of incident scenarios considering all possible values 

for the independent variables was impractical, a limited set of values was considered. The 

selected values were based on experience and can be found in table 18. Different 

combinations of these variables gave a total of 108 scenarios. For statistical testing, 

10 replications for each scenario were generated, making the total number of simulations 

equal to 1,080. Incident scenarios were automatically generated by enumerating all 

scenarios and iterating over them using the COM interface with Python®. The underlying 

model used for these scenarios had a straight corridor that was approximately 30-mile-long 

without any on/off ramps for traffic diversion and was assigned a default driver behavior. 

With these constraints and the given set of traffic characteristics, the simulation gave an 

upper bound for real-life total incident-induced delay. 

Further elaborating on calculation of the dependent variable, total incident-induced delay 

can be understood as the product of two variables, average delay per vehicle (in hours) and 

total number of vehicles that experienced delay. Out of these variables, the total number of 

vehicles that experience the incident delay largely is a function of demand or, in this case, 
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throughput volume of the road. This makes it difficult to isolate the effect of other 

independent variables on total number of vehicles affected by an incident. So, for this 

study, a relationship between average delay per vehicle, summed over spatial extent of the 

incident, and the above-described independent variables is studied. The dependent variable 

used in this study was calculated using equation 16. 

Average Delay per vehicle (hr) = ∑
∑ 𝑐𝑖𝑗𝑑𝑖𝑗

𝑛𝑗
𝑖=1

∑ 𝑐𝑖𝑗

𝑛𝑗
𝑖=1

𝑘
𝑗=1  (16) 

where, 

i = time interval (1 min) 

j = travel segment (⅓-mile long) 

k = total number of segments upstream of the incident 

𝑛𝑗  = total number of time intervals for which incident’s impact was experienced for 

every 𝑗th segment 

𝑐𝑖𝑗 = number of vehicles that have crossed the 𝑗th segment during 𝑖th time interval 

𝑑𝑖𝑗 = average delay per vehicle (in hr) reported by Vissim® in 𝑖th time interval for 𝑗th 

segment 

Table 18. Variables for different incident scenarios. 

Variable Type Values 

Demand (veh/hr/lane) High (1700), Medium (1100), and Low (500) 

Total number of lanes 4, 6, and 8 

Number of lanes blocked 1, 2, 3, and 4 

Incident duration (in minutes) 15, 30, and 60 
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Before carrying out the modeling exercise, the dependent variable was examined for 

validity of the normality assumption and was transformed using a logarithmic function. A 

plot of dependent versus independent variables is given in figure 63. The figure shows the 

total average delay per vehicle for different demand conditions, incident durations, and 

number of lanes blocked, with a total of four lanes for travel in a direction. The exploratory 

analysis of the dependent and independent variables revealed different underlying 

behaviors for different degrees of saturation. The exploratory analysis indicated that the 

ratio of number of lanes blocked to total number of lanes would be useful as an 

independent variable in the regression model. This ratio is hereafter referred to as 

‘severity’. For the regression model, severity was treated as a continuous predictor. To 

represent the difference in behavior, two separate regression models were developed, 

divided based on a predetermined level of degree of saturation equal to 0.95. The model 

was further divided based on residual capacity level. A representation of the model is given 

in figure 64, and the final model parameters are given in table 19. 
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Figure 63. Graphs. Total average delay per vehicle (in hr) vs. demand (veh/hr/lane) and incident duration (in min) for total of 

four lanes. 
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Figure 64. Model. Tree regression model for the dependent variable. 
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Table 19. Model coefficients for tree-based regression. 

Variable Coefficient 
Standard 

Error 
t-statistic p-value 

Residual Capacity = 0 Adjusted R2: 0.95 
Sample Size: 

180 

Constant −4.101 0.073 −56.284 0.000 

Demand 0.002 0.000 41.246 0.000 

Duration 0.053 0.001 42.215 0.000 

(
𝐕𝐨𝐥𝐮𝐦𝐞

𝐂𝐚𝐩𝐚𝐜𝐢𝐭𝐲
)>0.95, 

Residual Capacity ≠ 𝟎 
Adjusted R2: 0.90 

Sample Size: 

360 

Constant −12.593 0.205 −61.564 0.000 

Severity 8.097 0.164 49.427 0.000 

Demand 0.003 0.000 34.990 0.000 

Duration 0.036 0.001 26.433 0.000 

(
𝐕𝐨𝐥𝐮𝐦𝐞

𝐂𝐚𝐩𝐚𝐜𝐢𝐭𝐲
)≤0.95, 

Residual Capacity≠ 𝟎 
Adjusted R2: 0.77 

Sample Size: 

540 

Constant −9.389 0.098 −96.190 0.000 

Severity 6.055 0.144 41.920 0.000 

Demand 0.001 0.000 23.227 0.000 

Duration* 0.003 0.001 2.140 0.033* 

*Insignificant at 1 percent level 

The adjusted R2 for the three models, operating in the three residual capacity regimes, are 

0.95, 0.90, and 0.77, respectively. Coefficients for all independent variables, including the 

constant term, are significant at a 5 percent significance level. However, at a 1 percent 

significance level, incident duration becomes an insignificant variable in the model for low 

degrees of saturation, indicating that it is not an important factor in prediction of delay per 

vehicle under such conditions. The signs of coefficients for severity, demand, and duration 
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are positive, implying that these variables contribute to increasing the value of average 

delay per vehicle, which is in line with the formulae used under the queueing and 

shockwave theories. These signs intuitively make sense, but the reader should be cognizant 

of the log transformation while quantifying the impact of change in an independent variable 

on change in average delay. The overall model structure implies that at a high degree of 

flow saturation, a higher percentage of the estimated delay can be explained in terms of 

incident severity, traffic demand at the time of the incident, and incident duration than at a 

low degree of saturation. A likely explanation of the observation is that at a low degree of 

saturation, vehicles mainly experience delay due to the weaving that is required in the 

proximity of the incident location, while at a high degree of saturation the main source is 

capacity constraint.  

The residual analysis in the form of residual vs. fitted values for the current model structure 

is given in figure 65. The figure justifies the underlying assumption of homoscedasticity for 

regression-based modeling. It is to be noted that while the residuals seem to be large, with a 

sizeable deviation from zero, on the left half of the plots, these residuals correspond to very 

small values of the delays. For example, the delay value corresponding to a fitted value of 

−2 would be ¹/₁₀₀ of a vehicle-hour, i.e., 36 seconds of delay per vehicle. Since the impact 

of such small values of delay on incident management decisions is minor, the lack of 

accuracy in this region is not a critical failure for the model. The negative coefficients for 

the intercept of the model indicate that the unobserved influences have a negative impact 

on the dependent variable. These unobserved influences could be due to cooperative lane 

changing, simulated braking behavior, or other aspects of a simulated merging behavior. 

Future efforts will further explore this issue. Additionally, one can also test the influence of 
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interaction terms of the independent variables, but the model is kept relatively simple for 

field use. 

 

(a) 

 

(b) 
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(c) 

Figure 65. Plots. Residual vs. fitted values for models with: (a) residual capacity ≠ 0 

and volume ÷ capacity ≤ 0.95, (b) residual capacity ≠ 0 and volume ÷ capacity > 0.95, 

(c) residual capacity = 0. 

DISCUSSION 

This study develops a simulation-based regression model approach for rapid estimation of 

incident delay. The need for a simulation-based approach is validated by a two-pronged 

approach: 

1. An analysis of the field data that serve as the inputs to the conventional models is 

performed to demonstrate the data quality issues that would prevent a theoretically 

valid method, such as the cumulative count approach, from producing accurate 

delay estimates. The persistent errors in the field data often create directional biases 
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in the cumulative counts and violate the conservation of vehicles assumption, which 

naturally leads to errors in the incident delay estimate. 

2. A comparative analysis of the conventional delay-estimation methods within the 

framework of a simulated case study demonstrates how the violation of the 

homogeneity assumption inherent to the speed-based methods causes a severe 

underestimation of the incident delays. While the method is theoretically valid, the 

limitations on the application using spot speeds from fixed-point detectors make 

the application too simplistic to represent the dynamics of unstable traffic. 

The analysis also highlighted the need for considering alternative data sources for incident 

delay estimation such as probe-based travel time data or more emerging sources like data 

from connected vehicle (CV) technology. The advancement of CV technology suggests a 

trend of moving away from aggregate volume counts and speed estimates to individual 

travel time and speed estimates for incident analysis. However, this supposition is 

somewhat premature in the sense that currently, most of these technologies lack sufficient 

coverage to be able to analyze incidents with varying characteristics. In the meantime, the 

simulation-based model developed in this study would be a valuable addition to the 

practitioners’ toolbox for rapid, yet conservative delay estimation.  

While the models gave excellent results in terms of the model’s goodness of fit, there are 

some limitations of the current approach. Firstly, the demand variable here was treated as a 

deterministic time invariant variable, which limits the ability to study the effect of incident 

occurrence on vehicle delay with respect to current and future demand from a typical time 

variant demand curve. Secondly, the simulation scenarios used in the model development 

did not model the rubbernecking effect that is typically observed in the field, which could 
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lead to an underestimate. Lastly, a microscopic simulation-based approach makes it 

difficult to take traffic diversion into account; large-scale dynamic traffic assignment 

(DTA) models are better suited to study the effect of diversion on delay. Although this 

results in a possible overestimate of the delays, especially if the remaining roadways had 

excess capacity to absorb the diverted traffic, from an incident management perspective, a 

conservative delay estimate might be desirable. While traffic diversion may reduce delay 

per vehicle on the subject corridor, it might not necessarily help in overall network delay 

mitigation, especially during peak traffic conditions.  

Future work for this research would include comparison of delay estimation methods 

against ground truth, using travel time measurements. Also, demand-estimation methods 

currently used in delay estimation can be improved further and account for recurrent 

congestion. The case study presented in this research only analyzed the influence of a 

single incident, and traffic dynamics and delay estimation resulting from secondary or 

multiple closely located incidents still remain to be explored.  

 



 

133 

CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

DISCUSSION 

This project essentially performed four closely related studies. Chapter 2 presented an 

accuracy evaluation of a vehicle detection technology. Chapter 3 presented an evaluation of 

the feasibility of using crowdsourced smartphone application–based incident detection for 

reducing incident detection times. Chapter 4 presented the evaluation of an AID technology 

and the use of that AID technology in improving incident management. Chapter 4 also 

presented the machine learning–based methodology that was developed for use on top of a 

base AID algorithm to enable automated identification of potential high-impact incidents. 

Chapter 5 presented the development of a method to quantify the impact of incidents in 

terms of vehicle delay to lay the foundations of automated decision support for real-time 

management of emergency response resources. 

Results of the accuracy evaluation of the vehicle detection technology revealed that the 

count and speed measurements are highly accurate, with less than 2 percent error under 

normal circumstances. The errors in vehicle classification were in the range of 6–7 percent 

under these conditions, which is typically considered acceptable for most applications. The 

count errors, however, increase significantly with a downward bias, i.e., the detector fails to 

detect vehicles, under inclement weather conditions such as heavy rain or snow. The speed 

measurements had a consistent upward bias when tested at average roadway operating 

speeds between 40 and 70 mph. However, the errors were typically less than 5 mph (about 

10 percent of the average speed). 
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The evaluation of the feasibility of using crowdsourced smartphone application–based 

incident detection for reducing incident detection times was performed by comparing 

detections from the Waze® logs with detections in NaviGAtor’s incident logs. With the 

data fusion methodology developed, about 46 percent of the NaviGAtor incidents could be 

re-identified in the Waze logs in the Atlanta area and about 39 percent in the Macon area. A 

correlation analysis with the Waze incident attributes confirmed that incidents with lower 

report rating of 0 or 1 in Waze have a slightly lower match rate with NaviGAtor logs. 

Incidents with a higher confidence number in Waze have a higher match rate, and incidents 

with a reliability of 10 in Waze have a higher match rate than the average. 

Among the incidents that matched between the two logs, it was observed that in about 

57 percent of the cases, the incident appeared in the Waze log before it appeared in the 

NaviGAtor incident log. In these 57 percent of the cases, the gain in the time to detect was 

largely in the 5–15-minute range. However, in the other 43 percent of the cases, Waze took 

longer to detect and log the incident than NaviGAtor, with most delays in the range of 

0–30 minutes. 

The evaluation of the accuracy of an AID technology involved an intensive effort of 

manual review of videos and images associated with 10,125 incident alarms generated by 

the AID over a period of 91 days. About 12 percent of the alarms could not be verified to 

be true because of the lack of evidence based on the videos and images available. About 

2.6 percent of the alarms were misplaced in terms of lane assignment. However, there was 

not enough information available to verify whether the AID missed any incident. An 

incident detection rate for the AID technology, quantifying the ratio of the incidents 

detected to the total number of actual incidents, therefore, could not be established. 
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Neither of the unverifiable or misplaced alarm cases, in itself, would likely be a reason for 

not using AID. The sheer bulk of the “true” alarms generated by the AID, however, 

consists of very minor incidents that have very little impact on traffic operations or traffic 

safety. Therefore, a methodology for reducing the high number of noncritical alarms, such 

as shoulder stalls, is proposed. The study uses a clustering machine learning framework for 

developing consolidation strategies and filters that will eliminate most false, unverifiable, 

and noncritical alarms and associate confidence values with the alerts, thereby allowing for 

a focus on higher confidence alerts during busy periods. Clustering evolution patterns of 

the appearance of multiple alarms, where the basic alarms are generated by the AID system 

based on traffic anomalies, are used to train the ML algorithm to separate potential high-

impact incidents from normal congestion or noncritical-related stops and slowdowns. The 

results indicated a significant potential of the framework in consolidating the AID-

generated alarms to a small number of high-confidence clusters that can be used real-time 

incident management operations. This methodology might be particularly useful in 

controlling the number of alarms if AID is deployed over a large coverage area. 

In regard to the feasibility of use of AID, it is important to recognize a limitation of the 

evaluation. The I-475 testbed provided a stretch of freeway with very little recurrent 

congestion. This helped in the ability to easily confirm the validity of the alerts during the 

manual review process. However, this also means that the test scenarios did not include 

recurrent congestion conditions. The performance of the AID technology, when used on 

freeways with recurrent congestion, has not been evaluated in this study. 

Lastly, the project involved a study to develop a method to quantify the impact of incidents 

in terms of vehicle delay. Spot speed and vehicle count measurement have been the most 
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widely accepted performance monitoring methods for traffic operations data collection by 

transportation agencies. Delay estimation methods based on spot speed and cumulative 

count are typically deployed by practitioners and researchers alike for rapid estimation of 

delays as a precursor to congestion mitigation. In this chapter, these commonly used 

incident-induced delay estimation methodologies, which are based on queuing theory or 

shockwave analysis models, are reviewed and validated against microscopic simulation of 

a real-life incident. For the simulation model, NaviGAtor speed–volume data were used. 

The incident timeline was constructed using NaviGAtor incident logs. The comparison 

revealed challenges related to noisy data and the failure of spot-speed measurements to 

adequately capture heterogeneity in congested traffic, which rendered the methodologies 

impractical for field use. In the absence of any alternative method to accurately quantify 

delay within the constraints of field observational data, a regression model was developed 

using data from a non-exhaustive set of incident scenarios simulated using Vissim®, to 

help obtain rapid estimates of delays for incidents with varying characteristics occurring 

under varying base conditions. This regression model can aid in resource allocation for 

efficient incident management and identification of influence factors. 

RECOMMENDATIONS 

In determining AID zone and device placement location, specific attention should be given 

to merge or diverge points, weaving areas, or other zones with a higher potential for an 

incident. Should an incident occur outside of the detection zone of the AID device (such as 

the view of a camera in video-based AID), the AID will not provide feedback until the 

results of the incident (e.g., spillback) encroach into the detection zones (i.e., come into the 

view of the cameras). Thus, placement should consider the potential of such lag in 
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receiving information. In addition, for video-based AID, attention should be paid to items 

such as seasonal growth of vegetation and other potential temporary obstructions in the 

camera frame as they may be interpreted as an incident. If moveable cameras (pan-tilt-

zoom cameras) are used for AID, automatic detection of change in background view and 

blocking of alarms during such movements would be a desirable feature for the AID 

system. Finally, for a video-based AID, the same cautions as required for video-based 

vehicle detection systems are recommended. For example, the camera angle should be as 

steep (overhead) as possible to limit occlusion-related errors (both vertical, i.e., within lane, 

and horizontal, i.e., across lanes). This can be a particular challenge where a camera angle 

precludes the AID from being able to distinguish between a vehicle on the shoulder and in 

the right travel lane, as vehicles on shoulders result in the majority of detections and it is 

often desirable to filter out or assign a lower priority to these alarms. During nighttime 

conditions, flat camera angles can produce views that generate false alarms of wrong-way 

detection from reflections of headlight on roadside objects such as barrier walls. A balance 

needs to be achieved between producing a larger area of detection by using flatter angles of 

the cameras, which will lead to lesser “blind spots,” versus a higher quality of detection 

within a smaller area produced by steeper angles of cameras. 
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